Benchmarks for finite element analysis of creep continuum damage mechanics

Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter, ω, ranging from ω=0 (no damage) to ω=1 (100% damage), is computed within each element, until failure occurs in the material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2002-09, Vol.25 (1), p.34-41
Hauptverfasser: Becker, A.A, Hyde, T.H, Sun, W, Andersson, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 34
container_title Computational materials science
container_volume 25
creator Becker, A.A
Hyde, T.H
Sun, W
Andersson, P
description Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter, ω, ranging from ω=0 (no damage) to ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.
doi_str_mv 10.1016/S0927-0256(02)00247-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27046614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025602002471</els_id><sourcerecordid>27046614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUjegGARsJ2Xs0JQ8VQlFsDamtpjakicYqdI_XuStoIlm5nNuXM1h5Bjzi4448XlC6tEmTCRF2dMnDMmsjLhO2TEZVklTDK-S0a_yD45iPGD9blKihF5ukGv5w2Ez0htG6h13nVIscYGfUfBQ72KLtLWUh0QF1S3vnN-uWyogQbekTao5-Cdjodkz0Id8Wi7x-Tt7vZ18pBMn-8fJ9fTRKeF7JLM8tLoPLdiNgPI0hIKWfFiZjKcsUxbYxCY5GAElzYtMa8AK-AAWhgNKU_H5HRzdxHaryXGTjUuaqxr8NguoxIly4qCZz2Yb0Ad2hgDWrUIrn91pThTgzm1NqcGLf1Qa3NqKDjZFkDUUNsAXrv4F04rUUg5cFcbDvtvvx0GFbXrdaJxAXWnTOv-afoBNlSD5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27046614</pqid></control><display><type>article</type><title>Benchmarks for finite element analysis of creep continuum damage mechanics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Becker, A.A ; Hyde, T.H ; Sun, W ; Andersson, P</creator><creatorcontrib>Becker, A.A ; Hyde, T.H ; Sun, W ; Andersson, P</creatorcontrib><description>Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter, ω, ranging from ω=0 (no damage) to ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/S0927-0256(02)00247-1</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computational techniques ; Condensed matter: structure, mechanical and thermal properties ; Continuum damage mechanics ; Creep ; Exact sciences and technology ; Finite element analysis ; Finite-element and galerkin methods ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computational materials science, 2002-09, Vol.25 (1), p.34-41</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</citedby><cites>FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0927-0256(02)00247-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13926881$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, A.A</creatorcontrib><creatorcontrib>Hyde, T.H</creatorcontrib><creatorcontrib>Sun, W</creatorcontrib><creatorcontrib>Andersson, P</creatorcontrib><title>Benchmarks for finite element analysis of creep continuum damage mechanics</title><title>Computational materials science</title><description>Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter, ω, ranging from ω=0 (no damage) to ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.</description><subject>Applied sciences</subject><subject>Computational techniques</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuum damage mechanics</subject><subject>Creep</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite-element and galerkin methods</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUjegGARsJ2Xs0JQ8VQlFsDamtpjakicYqdI_XuStoIlm5nNuXM1h5Bjzi4448XlC6tEmTCRF2dMnDMmsjLhO2TEZVklTDK-S0a_yD45iPGD9blKihF5ukGv5w2Ez0htG6h13nVIscYGfUfBQ72KLtLWUh0QF1S3vnN-uWyogQbekTao5-Cdjodkz0Id8Wi7x-Tt7vZ18pBMn-8fJ9fTRKeF7JLM8tLoPLdiNgPI0hIKWfFiZjKcsUxbYxCY5GAElzYtMa8AK-AAWhgNKU_H5HRzdxHaryXGTjUuaqxr8NguoxIly4qCZz2Yb0Ad2hgDWrUIrn91pThTgzm1NqcGLf1Qa3NqKDjZFkDUUNsAXrv4F04rUUg5cFcbDvtvvx0GFbXrdaJxAXWnTOv-afoBNlSD5w</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Becker, A.A</creator><creator>Hyde, T.H</creator><creator>Sun, W</creator><creator>Andersson, P</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020901</creationdate><title>Benchmarks for finite element analysis of creep continuum damage mechanics</title><author>Becker, A.A ; Hyde, T.H ; Sun, W ; Andersson, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computational techniques</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuum damage mechanics</topic><topic>Creep</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite-element and galerkin methods</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, A.A</creatorcontrib><creatorcontrib>Hyde, T.H</creatorcontrib><creatorcontrib>Sun, W</creatorcontrib><creatorcontrib>Andersson, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, A.A</au><au>Hyde, T.H</au><au>Sun, W</au><au>Andersson, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarks for finite element analysis of creep continuum damage mechanics</atitle><jtitle>Computational materials science</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>25</volume><issue>1</issue><spage>34</spage><epage>41</epage><pages>34-41</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter, ω, ranging from ω=0 (no damage) to ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0927-0256(02)00247-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2002-09, Vol.25 (1), p.34-41
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_27046614
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Computational techniques
Condensed matter: structure, mechanical and thermal properties
Continuum damage mechanics
Creep
Exact sciences and technology
Finite element analysis
Finite-element and galerkin methods
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Mechanical and acoustical properties of condensed matter
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
Physics
Solid mechanics
Structural and continuum mechanics
title Benchmarks for finite element analysis of creep continuum damage mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarks%20for%20finite%20element%20analysis%20of%20creep%20continuum%20damage%20mechanics&rft.jtitle=Computational%20materials%20science&rft.au=Becker,%20A.A&rft.date=2002-09-01&rft.volume=25&rft.issue=1&rft.spage=34&rft.epage=41&rft.pages=34-41&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/S0927-0256(02)00247-1&rft_dat=%3Cproquest_cross%3E27046614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27046614&rft_id=info:pmid/&rft_els_id=S0927025602002471&rfr_iscdi=true