Benchmarks for finite element analysis of creep continuum damage mechanics
Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter, ω, ranging from ω=0 (no damage) to ω=1 (100% damage), is computed within each element, until failure occurs in the material...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2002-09, Vol.25 (1), p.34-41 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Computational materials science |
container_volume | 25 |
creator | Becker, A.A Hyde, T.H Sun, W Andersson, P |
description | Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter,
ω, ranging from
ω=0 (no damage) to
ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented. |
doi_str_mv | 10.1016/S0927-0256(02)00247-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27046614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025602002471</els_id><sourcerecordid>27046614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUjegGARsJ2Xs0JQ8VQlFsDamtpjakicYqdI_XuStoIlm5nNuXM1h5Bjzi4448XlC6tEmTCRF2dMnDMmsjLhO2TEZVklTDK-S0a_yD45iPGD9blKihF5ukGv5w2Ez0htG6h13nVIscYGfUfBQ72KLtLWUh0QF1S3vnN-uWyogQbekTao5-Cdjodkz0Id8Wi7x-Tt7vZ18pBMn-8fJ9fTRKeF7JLM8tLoPLdiNgPI0hIKWfFiZjKcsUxbYxCY5GAElzYtMa8AK-AAWhgNKU_H5HRzdxHaryXGTjUuaqxr8NguoxIly4qCZz2Yb0Ad2hgDWrUIrn91pThTgzm1NqcGLf1Qa3NqKDjZFkDUUNsAXrv4F04rUUg5cFcbDvtvvx0GFbXrdaJxAXWnTOv-afoBNlSD5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27046614</pqid></control><display><type>article</type><title>Benchmarks for finite element analysis of creep continuum damage mechanics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Becker, A.A ; Hyde, T.H ; Sun, W ; Andersson, P</creator><creatorcontrib>Becker, A.A ; Hyde, T.H ; Sun, W ; Andersson, P</creatorcontrib><description>Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter,
ω, ranging from
ω=0 (no damage) to
ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/S0927-0256(02)00247-1</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computational techniques ; Condensed matter: structure, mechanical and thermal properties ; Continuum damage mechanics ; Creep ; Exact sciences and technology ; Finite element analysis ; Finite-element and galerkin methods ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computational materials science, 2002-09, Vol.25 (1), p.34-41</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</citedby><cites>FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0927-0256(02)00247-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13926881$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, A.A</creatorcontrib><creatorcontrib>Hyde, T.H</creatorcontrib><creatorcontrib>Sun, W</creatorcontrib><creatorcontrib>Andersson, P</creatorcontrib><title>Benchmarks for finite element analysis of creep continuum damage mechanics</title><title>Computational materials science</title><description>Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter,
ω, ranging from
ω=0 (no damage) to
ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.</description><subject>Applied sciences</subject><subject>Computational techniques</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuum damage mechanics</subject><subject>Creep</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite-element and galerkin methods</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUjegGARsJ2Xs0JQ8VQlFsDamtpjakicYqdI_XuStoIlm5nNuXM1h5Bjzi4448XlC6tEmTCRF2dMnDMmsjLhO2TEZVklTDK-S0a_yD45iPGD9blKihF5ukGv5w2Ez0htG6h13nVIscYGfUfBQ72KLtLWUh0QF1S3vnN-uWyogQbekTao5-Cdjodkz0Id8Wi7x-Tt7vZ18pBMn-8fJ9fTRKeF7JLM8tLoPLdiNgPI0hIKWfFiZjKcsUxbYxCY5GAElzYtMa8AK-AAWhgNKU_H5HRzdxHaryXGTjUuaqxr8NguoxIly4qCZz2Yb0Ad2hgDWrUIrn91pThTgzm1NqcGLf1Qa3NqKDjZFkDUUNsAXrv4F04rUUg5cFcbDvtvvx0GFbXrdaJxAXWnTOv-afoBNlSD5w</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Becker, A.A</creator><creator>Hyde, T.H</creator><creator>Sun, W</creator><creator>Andersson, P</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020901</creationdate><title>Benchmarks for finite element analysis of creep continuum damage mechanics</title><author>Becker, A.A ; Hyde, T.H ; Sun, W ; Andersson, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4f17dc55f2bbaa437a68916bd4eb04cfddea081ad218f37e59ae9a1aac2dca313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computational techniques</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuum damage mechanics</topic><topic>Creep</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite-element and galerkin methods</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, A.A</creatorcontrib><creatorcontrib>Hyde, T.H</creatorcontrib><creatorcontrib>Sun, W</creatorcontrib><creatorcontrib>Andersson, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, A.A</au><au>Hyde, T.H</au><au>Sun, W</au><au>Andersson, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarks for finite element analysis of creep continuum damage mechanics</atitle><jtitle>Computational materials science</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>25</volume><issue>1</issue><spage>34</spage><epage>41</epage><pages>34-41</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>Creep rupture life can be predicted using a continuum damage mechanics approach incorporated within a finite element (FE) formulation. The rate of change of a damage parameter,
ω, ranging from
ω=0 (no damage) to
ω=1 (100% damage), is computed within each element, until failure occurs in the material cross-section. The main difficulty in the numerical formulation arises due to the very small time steps needed as the damage parameter increases to 1. This paper presents the results of a number of benchmark tests involving the FE analysis of creep continuum damage mechanics that can be used to verify the FE solutions. Two independent FE codes are used; an in-house code (FE-DAMAGE) and a commercial code (ABAQUS) in which a user-subroutine (UMAT) is incorporated. The results of a series of tests used to represent uniaxial, biaxial, triaxial and multi-material creep and damage behaviour are presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0927-0256(02)00247-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2002-09, Vol.25 (1), p.34-41 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_27046614 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Computational techniques Condensed matter: structure, mechanical and thermal properties Continuum damage mechanics Creep Exact sciences and technology Finite element analysis Finite-element and galerkin methods Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Mathematical methods in physics Mechanical and acoustical properties of condensed matter Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanical properties of solids Metals. Metallurgy Physics Solid mechanics Structural and continuum mechanics |
title | Benchmarks for finite element analysis of creep continuum damage mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarks%20for%20finite%20element%20analysis%20of%20creep%20continuum%20damage%20mechanics&rft.jtitle=Computational%20materials%20science&rft.au=Becker,%20A.A&rft.date=2002-09-01&rft.volume=25&rft.issue=1&rft.spage=34&rft.epage=41&rft.pages=34-41&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/S0927-0256(02)00247-1&rft_dat=%3Cproquest_cross%3E27046614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27046614&rft_id=info:pmid/&rft_els_id=S0927025602002471&rfr_iscdi=true |