One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
A stochastic model, implemented as a Monte Carlo simulation, is used to compute statistical properties of velocity and scalar fields in stationary and decaying homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent advection is represented by a random sequence of maps ap...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1999-08, Vol.392, p.277-334 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | |
container_start_page | 277 |
container_title | Journal of fluid mechanics |
container_volume | 392 |
creator | KERSTEIN, ALAN R. |
description | A stochastic model, implemented as a Monte Carlo simulation, is used to compute
statistical properties of velocity and scalar fields in stationary and decaying
homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent
advection is represented by a random sequence of maps applied to a one-dimensional
computational domain. Profiles of advected scalars and of one velocity component
evolve on this domain. The rate expression governing the mapping sequence reflects
turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary
conditions to the velocity profile. Simulated flow microstructure reproduces the
−5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of
constant-density shear flows and buoyant stratified flows are reproduced, in some
instances suggesting new interpretations of observed phenomena. Collectively, the
results demonstrate that a variety of turbulent flow phenomena can be captured in a
concise representation of the interplay of advection, molecular transport, and buoyant
forcing. |
doi_str_mv | 10.1017/S0022112099005376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27031265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112099005376</cupid><sourcerecordid>27031265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c58ee7a95b6dc6c254214ffbda67747659a563de1062f62e7f85e640dbb647f83</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhoO04K36A9xlIV05Nh-T5E53RVpruWDVFpchk5xoNDO5TWZo3faXd65zsYWCq3B4nvfwcoLQISUnlFD17poQxihlpGkIEVzJHbSgtWwqJWvxCi02uNrwXfSmlHtCKCeNWqDfFz1ULnTQl5B6E_Ew5naM0Ft4j7vkIGKfcjdGM0wcm95hs17HYOd5SPgudekWekhj-Sd8jMsdmIx9TD_L8VOuHdOj6QdchjyFfQA303302ptY4GD77qHvnz5-O_1crS7Ozk8_rCrLCRkqK5YAyjSilc5Ky0TNaO1964xUqlZSNEZI7oASybxkoPxSgKyJa1tZTwPfQ2_nveucfoxQBt2FYiFG81ReM0U4ZVJMIp1Fm1MpGbxe59CZ_Kgp0Ztr6_-uPWWOtstNsSb6bHobyt_gUkkl-KRVsxbKAL-esckPWiquhJZnl5qqm-b6avVVf5l8vq1iujYHdwv6Po15-qjyQpk_3SSgFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27031265</pqid></control><display><type>article</type><title>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</title><source>Cambridge University Press Journals Complete</source><creator>KERSTEIN, ALAN R.</creator><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><description>A stochastic model, implemented as a Monte Carlo simulation, is used to compute
statistical properties of velocity and scalar fields in stationary and decaying
homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent
advection is represented by a random sequence of maps applied to a one-dimensional
computational domain. Profiles of advected scalars and of one velocity component
evolve on this domain. The rate expression governing the mapping sequence reflects
turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary
conditions to the velocity profile. Simulated flow microstructure reproduces the
−5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of
constant-density shear flows and buoyant stratified flows are reproduced, in some
instances suggesting new interpretations of observed phenomena. Collectively, the
results demonstrate that a variety of turbulent flow phenomena can be captured in a
concise representation of the interplay of advection, molecular transport, and buoyant
forcing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112099005376</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Nonhomogeneous flows ; Physics ; Stratified flows ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 1999-08, Vol.392, p.277-334</ispartof><rights>1999 Cambridge University Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-c58ee7a95b6dc6c254214ffbda67747659a563de1062f62e7f85e640dbb647f83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112099005376/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1876753$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><title>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A stochastic model, implemented as a Monte Carlo simulation, is used to compute
statistical properties of velocity and scalar fields in stationary and decaying
homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent
advection is represented by a random sequence of maps applied to a one-dimensional
computational domain. Profiles of advected scalars and of one velocity component
evolve on this domain. The rate expression governing the mapping sequence reflects
turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary
conditions to the velocity profile. Simulated flow microstructure reproduces the
−5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of
constant-density shear flows and buoyant stratified flows are reproduced, in some
instances suggesting new interpretations of observed phenomena. Collectively, the
results demonstrate that a variety of turbulent flow phenomena can be captured in a
concise representation of the interplay of advection, molecular transport, and buoyant
forcing.</description><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Stratified flows</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEUhoO04K36A9xlIV05Nh-T5E53RVpruWDVFpchk5xoNDO5TWZo3faXd65zsYWCq3B4nvfwcoLQISUnlFD17poQxihlpGkIEVzJHbSgtWwqJWvxCi02uNrwXfSmlHtCKCeNWqDfFz1ULnTQl5B6E_Ew5naM0Ft4j7vkIGKfcjdGM0wcm95hs17HYOd5SPgudekWekhj-Sd8jMsdmIx9TD_L8VOuHdOj6QdchjyFfQA303302ptY4GD77qHvnz5-O_1crS7Ozk8_rCrLCRkqK5YAyjSilc5Ky0TNaO1964xUqlZSNEZI7oASybxkoPxSgKyJa1tZTwPfQ2_nveucfoxQBt2FYiFG81ReM0U4ZVJMIp1Fm1MpGbxe59CZ_Kgp0Ztr6_-uPWWOtstNsSb6bHobyt_gUkkl-KRVsxbKAL-esckPWiquhJZnl5qqm-b6avVVf5l8vq1iujYHdwv6Po15-qjyQpk_3SSgFg</recordid><startdate>19990810</startdate><enddate>19990810</enddate><creator>KERSTEIN, ALAN R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19990810</creationdate><title>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</title><author>KERSTEIN, ALAN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c58ee7a95b6dc6c254214ffbda67747659a563de1062f62e7f85e640dbb647f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Stratified flows</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KERSTEIN, ALAN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1999-08-10</date><risdate>1999</risdate><volume>392</volume><spage>277</spage><epage>334</epage><pages>277-334</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A stochastic model, implemented as a Monte Carlo simulation, is used to compute
statistical properties of velocity and scalar fields in stationary and decaying
homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent
advection is represented by a random sequence of maps applied to a one-dimensional
computational domain. Profiles of advected scalars and of one velocity component
evolve on this domain. The rate expression governing the mapping sequence reflects
turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary
conditions to the velocity profile. Simulated flow microstructure reproduces the
−5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of
constant-density shear flows and buoyant stratified flows are reproduced, in some
instances suggesting new interpretations of observed phenomena. Collectively, the
results demonstrate that a variety of turbulent flow phenomena can be captured in a
concise representation of the interplay of advection, molecular transport, and buoyant
forcing.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112099005376</doi><tpages>58</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1999-08, Vol.392, p.277-334 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_27031265 |
source | Cambridge University Press Journals Complete |
subjects | Convection and heat transfer Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Isotropic turbulence homogeneous turbulence Nonhomogeneous flows Physics Stratified flows Turbulence simulation and modeling Turbulent flows, convection, and heat transfer |
title | One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20turbulence:%20model%20formulation%20and%20application%20to%20homogeneous%20turbulence,%20shear%20flows,%20and%20buoyant%20stratified%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=KERSTEIN,%20ALAN%20R.&rft.date=1999-08-10&rft.volume=392&rft.spage=277&rft.epage=334&rft.pages=277-334&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112099005376&rft_dat=%3Cproquest_cross%3E27031265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27031265&rft_id=info:pmid/&rft_cupid=10_1017_S0022112099005376&rfr_iscdi=true |