One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows

A stochastic model, implemented as a Monte Carlo simulation, is used to compute statistical properties of velocity and scalar fields in stationary and decaying homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent advection is represented by a random sequence of maps ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1999-08, Vol.392, p.277-334
1. Verfasser: KERSTEIN, ALAN R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue
container_start_page 277
container_title Journal of fluid mechanics
container_volume 392
creator KERSTEIN, ALAN R.
description A stochastic model, implemented as a Monte Carlo simulation, is used to compute statistical properties of velocity and scalar fields in stationary and decaying homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent advection is represented by a random sequence of maps applied to a one-dimensional computational domain. Profiles of advected scalars and of one velocity component evolve on this domain. The rate expression governing the mapping sequence reflects turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary conditions to the velocity profile. Simulated flow microstructure reproduces the −5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of constant-density shear flows and buoyant stratified flows are reproduced, in some instances suggesting new interpretations of observed phenomena. Collectively, the results demonstrate that a variety of turbulent flow phenomena can be captured in a concise representation of the interplay of advection, molecular transport, and buoyant forcing.
doi_str_mv 10.1017/S0022112099005376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27031265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112099005376</cupid><sourcerecordid>27031265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c58ee7a95b6dc6c254214ffbda67747659a563de1062f62e7f85e640dbb647f83</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhoO04K36A9xlIV05Nh-T5E53RVpruWDVFpchk5xoNDO5TWZo3faXd65zsYWCq3B4nvfwcoLQISUnlFD17poQxihlpGkIEVzJHbSgtWwqJWvxCi02uNrwXfSmlHtCKCeNWqDfFz1ULnTQl5B6E_Ew5naM0Ft4j7vkIGKfcjdGM0wcm95hs17HYOd5SPgudekWekhj-Sd8jMsdmIx9TD_L8VOuHdOj6QdchjyFfQA303302ptY4GD77qHvnz5-O_1crS7Ozk8_rCrLCRkqK5YAyjSilc5Ky0TNaO1964xUqlZSNEZI7oASybxkoPxSgKyJa1tZTwPfQ2_nveucfoxQBt2FYiFG81ReM0U4ZVJMIp1Fm1MpGbxe59CZ_Kgp0Ztr6_-uPWWOtstNsSb6bHobyt_gUkkl-KRVsxbKAL-esckPWiquhJZnl5qqm-b6avVVf5l8vq1iujYHdwv6Po15-qjyQpk_3SSgFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27031265</pqid></control><display><type>article</type><title>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</title><source>Cambridge University Press Journals Complete</source><creator>KERSTEIN, ALAN R.</creator><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><description>A stochastic model, implemented as a Monte Carlo simulation, is used to compute statistical properties of velocity and scalar fields in stationary and decaying homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent advection is represented by a random sequence of maps applied to a one-dimensional computational domain. Profiles of advected scalars and of one velocity component evolve on this domain. The rate expression governing the mapping sequence reflects turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary conditions to the velocity profile. Simulated flow microstructure reproduces the −5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of constant-density shear flows and buoyant stratified flows are reproduced, in some instances suggesting new interpretations of observed phenomena. Collectively, the results demonstrate that a variety of turbulent flow phenomena can be captured in a concise representation of the interplay of advection, molecular transport, and buoyant forcing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112099005376</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Nonhomogeneous flows ; Physics ; Stratified flows ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 1999-08, Vol.392, p.277-334</ispartof><rights>1999 Cambridge University Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-c58ee7a95b6dc6c254214ffbda67747659a563de1062f62e7f85e640dbb647f83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112099005376/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1876753$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><title>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A stochastic model, implemented as a Monte Carlo simulation, is used to compute statistical properties of velocity and scalar fields in stationary and decaying homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent advection is represented by a random sequence of maps applied to a one-dimensional computational domain. Profiles of advected scalars and of one velocity component evolve on this domain. The rate expression governing the mapping sequence reflects turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary conditions to the velocity profile. Simulated flow microstructure reproduces the −5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of constant-density shear flows and buoyant stratified flows are reproduced, in some instances suggesting new interpretations of observed phenomena. Collectively, the results demonstrate that a variety of turbulent flow phenomena can be captured in a concise representation of the interplay of advection, molecular transport, and buoyant forcing.</description><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Stratified flows</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEUhoO04K36A9xlIV05Nh-T5E53RVpruWDVFpchk5xoNDO5TWZo3faXd65zsYWCq3B4nvfwcoLQISUnlFD17poQxihlpGkIEVzJHbSgtWwqJWvxCi02uNrwXfSmlHtCKCeNWqDfFz1ULnTQl5B6E_Ew5naM0Ft4j7vkIGKfcjdGM0wcm95hs17HYOd5SPgudekWekhj-Sd8jMsdmIx9TD_L8VOuHdOj6QdchjyFfQA303302ptY4GD77qHvnz5-O_1crS7Ozk8_rCrLCRkqK5YAyjSilc5Ky0TNaO1964xUqlZSNEZI7oASybxkoPxSgKyJa1tZTwPfQ2_nveucfoxQBt2FYiFG81ReM0U4ZVJMIp1Fm1MpGbxe59CZ_Kgp0Ztr6_-uPWWOtstNsSb6bHobyt_gUkkl-KRVsxbKAL-esckPWiquhJZnl5qqm-b6avVVf5l8vq1iujYHdwv6Po15-qjyQpk_3SSgFg</recordid><startdate>19990810</startdate><enddate>19990810</enddate><creator>KERSTEIN, ALAN R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19990810</creationdate><title>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</title><author>KERSTEIN, ALAN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c58ee7a95b6dc6c254214ffbda67747659a563de1062f62e7f85e640dbb647f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Stratified flows</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KERSTEIN, ALAN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1999-08-10</date><risdate>1999</risdate><volume>392</volume><spage>277</spage><epage>334</epage><pages>277-334</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A stochastic model, implemented as a Monte Carlo simulation, is used to compute statistical properties of velocity and scalar fields in stationary and decaying homogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent advection is represented by a random sequence of maps applied to a one-dimensional computational domain. Profiles of advected scalars and of one velocity component evolve on this domain. The rate expression governing the mapping sequence reflects turbulence production mechanisms. Viscous effects are implemented concurrently. Various flows of interest are simulated by applying appropriate initial and boundary conditions to the velocity profile. Simulated flow microstructure reproduces the −5/3 power-law scaling of the inertial-range energy spectrum and the dissipation-range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of constant-density shear flows and buoyant stratified flows are reproduced, in some instances suggesting new interpretations of observed phenomena. Collectively, the results demonstrate that a variety of turbulent flow phenomena can be captured in a concise representation of the interplay of advection, molecular transport, and buoyant forcing.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112099005376</doi><tpages>58</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1999-08, Vol.392, p.277-334
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_27031265
source Cambridge University Press Journals Complete
subjects Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Isotropic turbulence
homogeneous turbulence
Nonhomogeneous flows
Physics
Stratified flows
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
title One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20turbulence:%20model%20formulation%20and%20application%20to%20homogeneous%20turbulence,%20shear%20flows,%20and%20buoyant%20stratified%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=KERSTEIN,%20ALAN%20R.&rft.date=1999-08-10&rft.volume=392&rft.spage=277&rft.epage=334&rft.pages=277-334&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112099005376&rft_dat=%3Cproquest_cross%3E27031265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27031265&rft_id=info:pmid/&rft_cupid=10_1017_S0022112099005376&rfr_iscdi=true