3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles

The 3′ ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3′ untranslated regions (3′ UTRs) but rarely within coding regions. An individual gene can yield many 3′-mRNA isoforms with distinct half-lives. We diss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biology 2022-09, Vol.42 (9), p.e0024422
Hauptverfasser: Lui, Kai Hin, Geisberg, Joseph V., Moqtaderi, Zarmik, Struhl, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0024422
container_title Molecular and cellular biology
container_volume 42
creator Lui, Kai Hin
Geisberg, Joseph V.
Moqtaderi, Zarmik
Struhl, Kevin
description The 3′ ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3′ untranslated regions (3′ UTRs) but rarely within coding regions. An individual gene can yield many 3′-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3′ UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3′ UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3′-UTR chimeric genes indicate that the poly(A) profile is determined by the 3′ UTR. Thus, 3′ UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3′-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3′ UTRs.
doi_str_mv 10.1128/mcb.00244-22
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702977817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834234220</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-f21decf3bcf3304b849a212347f88bac3dfa9be7c2da1ce05a552f8250e104553</originalsourceid><addsrcrecordid>eNqFkc9qFTEUh4Mo9lrduZZZKjg1OUluJhuh1PoHKhZp3YbMzEmbkknaZEa5O5_JR_JJTL21KCguQhbnOz_OOR8hjxndYwy6F9PQ71EKQrQAd8iKUd21Ugp9l6woKNoqTtc75EEpF5TStab8PtnhUiuoxRX5xL9__dacxjnbWIKdcWw-4plPsTT7GZv3aVyCzc1hnP3ssTQn53ZuXuGMefIRm-MUNnbEuKmttak5zsn5gOUhuedsKPjo5t8lp68PTw7etkcf3rw72D9qrdB6bh2wEQfH-_o4FX0ntAUGXCjXdb0d-Ois7lENMFo2IJVWSnAdSIqMCin5Lnm5zb1c-gnHAa8XCeYy-8nmjUnWmz8r0Z-bs_TZaKHWWoga8PQmIKerBctsJl8GDMFGTEsx0HFR5wGg_0cVBa1Ux1RFn2_RIadSMrrbiRg119ZMtWZ-WjMAFX-2xW2ZwFykJcd6tH-xT37f-Db4l9IKqC3go0t5sl9SDqOZ7Sak7KrlwRfD_xr9A5cctP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702977817</pqid></control><display><type>article</type><title>3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lui, Kai Hin ; Geisberg, Joseph V. ; Moqtaderi, Zarmik ; Struhl, Kevin</creator><creatorcontrib>Lui, Kai Hin ; Geisberg, Joseph V. ; Moqtaderi, Zarmik ; Struhl, Kevin</creatorcontrib><description>The 3′ ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3′ untranslated regions (3′ UTRs) but rarely within coding regions. An individual gene can yield many 3′-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3′ UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3′ UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3′-UTR chimeric genes indicate that the poly(A) profile is determined by the 3′ UTR. Thus, 3′ UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3′-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3′ UTRs.</description><identifier>ISSN: 0270-7306</identifier><identifier>ISSN: 1098-5549</identifier><identifier>EISSN: 1098-5549</identifier><identifier>DOI: 10.1128/mcb.00244-22</identifier><identifier>PMID: 35972270</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>3' Untranslated Regions - genetics ; 3′ UTR ; 3′-end formation ; 5' Untranslated Regions ; cell biology ; Editor's Pick ; gene expression ; genes ; half life ; Molecular and Cellular Biology ; mRNA stability ; Poly A - genetics ; Poly A - metabolism ; Polyadenylation ; Protein Isoforms - genetics ; Research Article ; RNA Isoforms - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Spotlight Selection ; yeasts</subject><ispartof>Molecular and cellular biology, 2022-09, Vol.42 (9), p.e0024422</ispartof><rights>Copyright © 2022 American Society for Microbiology 2022</rights><rights>Copyright © 2022 American Society for Microbiology.</rights><rights>Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-f21decf3bcf3304b849a212347f88bac3dfa9be7c2da1ce05a552f8250e104553</citedby><cites>FETCH-LOGICAL-a499t-f21decf3bcf3304b849a212347f88bac3dfa9be7c2da1ce05a552f8250e104553</cites><orcidid>0000-0002-4181-7856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476944/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476944/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35972270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lui, Kai Hin</creatorcontrib><creatorcontrib>Geisberg, Joseph V.</creatorcontrib><creatorcontrib>Moqtaderi, Zarmik</creatorcontrib><creatorcontrib>Struhl, Kevin</creatorcontrib><title>3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles</title><title>Molecular and cellular biology</title><addtitle>Mol Cell Biol</addtitle><addtitle>Mol Cell Biol</addtitle><description>The 3′ ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3′ untranslated regions (3′ UTRs) but rarely within coding regions. An individual gene can yield many 3′-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3′ UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3′ UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3′-UTR chimeric genes indicate that the poly(A) profile is determined by the 3′ UTR. Thus, 3′ UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3′-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3′ UTRs.</description><subject>3' Untranslated Regions - genetics</subject><subject>3′ UTR</subject><subject>3′-end formation</subject><subject>5' Untranslated Regions</subject><subject>cell biology</subject><subject>Editor's Pick</subject><subject>gene expression</subject><subject>genes</subject><subject>half life</subject><subject>Molecular and Cellular Biology</subject><subject>mRNA stability</subject><subject>Poly A - genetics</subject><subject>Poly A - metabolism</subject><subject>Polyadenylation</subject><subject>Protein Isoforms - genetics</subject><subject>Research Article</subject><subject>RNA Isoforms - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Spotlight Selection</subject><subject>yeasts</subject><issn>0270-7306</issn><issn>1098-5549</issn><issn>1098-5549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9qFTEUh4Mo9lrduZZZKjg1OUluJhuh1PoHKhZp3YbMzEmbkknaZEa5O5_JR_JJTL21KCguQhbnOz_OOR8hjxndYwy6F9PQ71EKQrQAd8iKUd21Ugp9l6woKNoqTtc75EEpF5TStab8PtnhUiuoxRX5xL9__dacxjnbWIKdcWw-4plPsTT7GZv3aVyCzc1hnP3ssTQn53ZuXuGMefIRm-MUNnbEuKmttak5zsn5gOUhuedsKPjo5t8lp68PTw7etkcf3rw72D9qrdB6bh2wEQfH-_o4FX0ntAUGXCjXdb0d-Ois7lENMFo2IJVWSnAdSIqMCin5Lnm5zb1c-gnHAa8XCeYy-8nmjUnWmz8r0Z-bs_TZaKHWWoga8PQmIKerBctsJl8GDMFGTEsx0HFR5wGg_0cVBa1Ux1RFn2_RIadSMrrbiRg119ZMtWZ-WjMAFX-2xW2ZwFykJcd6tH-xT37f-Db4l9IKqC3go0t5sl9SDqOZ7Sak7KrlwRfD_xr9A5cctP4</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lui, Kai Hin</creator><creator>Geisberg, Joseph V.</creator><creator>Moqtaderi, Zarmik</creator><creator>Struhl, Kevin</creator><general>Taylor &amp; Francis</general><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4181-7856</orcidid></search><sort><creationdate>20220901</creationdate><title>3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles</title><author>Lui, Kai Hin ; Geisberg, Joseph V. ; Moqtaderi, Zarmik ; Struhl, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-f21decf3bcf3304b849a212347f88bac3dfa9be7c2da1ce05a552f8250e104553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>3′ UTR</topic><topic>3′-end formation</topic><topic>5' Untranslated Regions</topic><topic>cell biology</topic><topic>Editor's Pick</topic><topic>gene expression</topic><topic>genes</topic><topic>half life</topic><topic>Molecular and Cellular Biology</topic><topic>mRNA stability</topic><topic>Poly A - genetics</topic><topic>Poly A - metabolism</topic><topic>Polyadenylation</topic><topic>Protein Isoforms - genetics</topic><topic>Research Article</topic><topic>RNA Isoforms - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Spotlight Selection</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lui, Kai Hin</creatorcontrib><creatorcontrib>Geisberg, Joseph V.</creatorcontrib><creatorcontrib>Moqtaderi, Zarmik</creatorcontrib><creatorcontrib>Struhl, Kevin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lui, Kai Hin</au><au>Geisberg, Joseph V.</au><au>Moqtaderi, Zarmik</au><au>Struhl, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles</atitle><jtitle>Molecular and cellular biology</jtitle><stitle>Mol Cell Biol</stitle><addtitle>Mol Cell Biol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>42</volume><issue>9</issue><spage>e0024422</spage><pages>e0024422-</pages><issn>0270-7306</issn><issn>1098-5549</issn><eissn>1098-5549</eissn><abstract>The 3′ ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3′ untranslated regions (3′ UTRs) but rarely within coding regions. An individual gene can yield many 3′-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3′ UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3′ UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3′-UTR chimeric genes indicate that the poly(A) profile is determined by the 3′ UTR. Thus, 3′ UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3′-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3′ UTRs.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>35972270</pmid><doi>10.1128/mcb.00244-22</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4181-7856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-7306
ispartof Molecular and cellular biology, 2022-09, Vol.42 (9), p.e0024422
issn 0270-7306
1098-5549
1098-5549
language eng
recordid cdi_proquest_miscellaneous_2702977817
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 3' Untranslated Regions - genetics
3′ UTR
3′-end formation
5' Untranslated Regions
cell biology
Editor's Pick
gene expression
genes
half life
Molecular and Cellular Biology
mRNA stability
Poly A - genetics
Poly A - metabolism
Polyadenylation
Protein Isoforms - genetics
Research Article
RNA Isoforms - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Spotlight Selection
yeasts
title 3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3%E2%80%B2%20Untranslated%20Regions%20Are%20Modular%20Entities%20That%20Determine%20Polyadenylation%20Profiles&rft.jtitle=Molecular%20and%20cellular%20biology&rft.au=Lui,%20Kai%20Hin&rft.date=2022-09-01&rft.volume=42&rft.issue=9&rft.spage=e0024422&rft.pages=e0024422-&rft.issn=0270-7306&rft.eissn=1098-5549&rft_id=info:doi/10.1128/mcb.00244-22&rft_dat=%3Cproquest_cross%3E2834234220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702977817&rft_id=info:pmid/35972270&rfr_iscdi=true