Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction

Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-09, Vol.18 (37), p.e2201351-n/a
Hauptverfasser: Barawi, Mariam, Alfonso‐González, Elena, López‐Calixto, Carmen G., García, Alberto, García‐Sánchez, Alba, Villar‐García, Ignacio J., Liras, Marta, de la Peña O'Shea, Victor A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page e2201351
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Barawi, Mariam
Alfonso‐González, Elena
López‐Calixto, Carmen G.
García, Alberto
García‐Sánchez, Alba
Villar‐García, Ignacio J.
Liras, Marta
de la Peña O'Shea, Victor A.
description Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction.
doi_str_mv 10.1002/smll.202201351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702975301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714250155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43</originalsourceid><addsrcrecordid>eNqFkUFP4zAQha0VSAtlr5wt7WUvLR47bpJjVbEUqUAF7Dky9qRN5djBTlj1H_Cz16UIpL1w8rP0vdGbeYScA5sAY_wittZOOOOcgZDwjZzAFMR4WvDy6EMD-05OY9wyJoBn-Ql5nZkX5TQaequcj30YdD-E9J17tx3Wqk_yptHBdz74IdKVt7sWA511nW206hvvaOOooo_KGWzpauN7jxZ1H7zeYJsYS-doLa19oIudCX6Njl6-eDu8me9R6b04I8e1shF_vL8j8uf35eN8MV7eXV3PZ8uxFpLBGEGXmNcgMBMcFEApsqJmUkpeTwU3nEsu8EnIApmReVaUYFgx1aXUheEmEyPy6zC3C_55wNhXbRN1CqgcpgUrnjNe5lKkI47Iz__QrR-CS-kSBRlPeaRM1ORApSPFGLCuutC0KuwqYNW-mGpfTPVRTDKUB8PfxuLuC7p6uFkuP73_ABDmk1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714250155</pqid></control><display><type>article</type><title>Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barawi, Mariam ; Alfonso‐González, Elena ; López‐Calixto, Carmen G. ; García, Alberto ; García‐Sánchez, Alba ; Villar‐García, Ignacio J. ; Liras, Marta ; de la Peña O'Shea, Victor A.</creator><creatorcontrib>Barawi, Mariam ; Alfonso‐González, Elena ; López‐Calixto, Carmen G. ; García, Alberto ; García‐Sánchez, Alba ; Villar‐García, Ignacio J. ; Liras, Marta ; de la Peña O'Shea, Victor A.</creatorcontrib><description>Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202201351</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; conjugated porous polymers ; Conjugation ; Gas chromatography ; hybrid photoelectrodes ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Nanotechnology ; Optoelectronic devices ; Organic semiconductors ; Photocathodes ; Photoelectric effect ; Photoelectrochemical devices ; photoelectrochemistry ; Polymers ; Solar energy conversion ; tandem photoelectrochemical (PEC) cells ; Thin films</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (37), p.e2201351-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43</citedby><cites>FETCH-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43</cites><orcidid>0000-0001-5719-9872 ; 0000-0002-1724-1586 ; 0000-0001-5762-4787 ; 0000-0002-5657-5212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202201351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202201351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Barawi, Mariam</creatorcontrib><creatorcontrib>Alfonso‐González, Elena</creatorcontrib><creatorcontrib>López‐Calixto, Carmen G.</creatorcontrib><creatorcontrib>García, Alberto</creatorcontrib><creatorcontrib>García‐Sánchez, Alba</creatorcontrib><creatorcontrib>Villar‐García, Ignacio J.</creatorcontrib><creatorcontrib>Liras, Marta</creatorcontrib><creatorcontrib>de la Peña O'Shea, Victor A.</creatorcontrib><title>Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction.</description><subject>Chemical synthesis</subject><subject>conjugated porous polymers</subject><subject>Conjugation</subject><subject>Gas chromatography</subject><subject>hybrid photoelectrodes</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Nanotechnology</subject><subject>Optoelectronic devices</subject><subject>Organic semiconductors</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectrochemical devices</subject><subject>photoelectrochemistry</subject><subject>Polymers</subject><subject>Solar energy conversion</subject><subject>tandem photoelectrochemical (PEC) cells</subject><subject>Thin films</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP4zAQha0VSAtlr5wt7WUvLR47bpJjVbEUqUAF7Dky9qRN5djBTlj1H_Cz16UIpL1w8rP0vdGbeYScA5sAY_wittZOOOOcgZDwjZzAFMR4WvDy6EMD-05OY9wyJoBn-Ql5nZkX5TQaequcj30YdD-E9J17tx3Wqk_yptHBdz74IdKVt7sWA511nW206hvvaOOooo_KGWzpauN7jxZ1H7zeYJsYS-doLa19oIudCX6Njl6-eDu8me9R6b04I8e1shF_vL8j8uf35eN8MV7eXV3PZ8uxFpLBGEGXmNcgMBMcFEApsqJmUkpeTwU3nEsu8EnIApmReVaUYFgx1aXUheEmEyPy6zC3C_55wNhXbRN1CqgcpgUrnjNe5lKkI47Iz__QrR-CS-kSBRlPeaRM1ORApSPFGLCuutC0KuwqYNW-mGpfTPVRTDKUB8PfxuLuC7p6uFkuP73_ABDmk1U</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Barawi, Mariam</creator><creator>Alfonso‐González, Elena</creator><creator>López‐Calixto, Carmen G.</creator><creator>García, Alberto</creator><creator>García‐Sánchez, Alba</creator><creator>Villar‐García, Ignacio J.</creator><creator>Liras, Marta</creator><creator>de la Peña O'Shea, Victor A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5719-9872</orcidid><orcidid>https://orcid.org/0000-0002-1724-1586</orcidid><orcidid>https://orcid.org/0000-0001-5762-4787</orcidid><orcidid>https://orcid.org/0000-0002-5657-5212</orcidid></search><sort><creationdate>20220901</creationdate><title>Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction</title><author>Barawi, Mariam ; Alfonso‐González, Elena ; López‐Calixto, Carmen G. ; García, Alberto ; García‐Sánchez, Alba ; Villar‐García, Ignacio J. ; Liras, Marta ; de la Peña O'Shea, Victor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical synthesis</topic><topic>conjugated porous polymers</topic><topic>Conjugation</topic><topic>Gas chromatography</topic><topic>hybrid photoelectrodes</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Nanotechnology</topic><topic>Optoelectronic devices</topic><topic>Organic semiconductors</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectrochemical devices</topic><topic>photoelectrochemistry</topic><topic>Polymers</topic><topic>Solar energy conversion</topic><topic>tandem photoelectrochemical (PEC) cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barawi, Mariam</creatorcontrib><creatorcontrib>Alfonso‐González, Elena</creatorcontrib><creatorcontrib>López‐Calixto, Carmen G.</creatorcontrib><creatorcontrib>García, Alberto</creatorcontrib><creatorcontrib>García‐Sánchez, Alba</creatorcontrib><creatorcontrib>Villar‐García, Ignacio J.</creatorcontrib><creatorcontrib>Liras, Marta</creatorcontrib><creatorcontrib>de la Peña O'Shea, Victor A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barawi, Mariam</au><au>Alfonso‐González, Elena</au><au>López‐Calixto, Carmen G.</au><au>García, Alberto</au><au>García‐Sánchez, Alba</au><au>Villar‐García, Ignacio J.</au><au>Liras, Marta</au><au>de la Peña O'Shea, Victor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>37</issue><spage>e2201351</spage><epage>n/a</epage><pages>e2201351-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202201351</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5719-9872</orcidid><orcidid>https://orcid.org/0000-0002-1724-1586</orcidid><orcidid>https://orcid.org/0000-0001-5762-4787</orcidid><orcidid>https://orcid.org/0000-0002-5657-5212</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (37), p.e2201351-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2702975301
source Wiley Online Library Journals Frontfile Complete
subjects Chemical synthesis
conjugated porous polymers
Conjugation
Gas chromatography
hybrid photoelectrodes
hydrogen evolution reaction
Hydrogen evolution reactions
Nanotechnology
Optoelectronic devices
Organic semiconductors
Photocathodes
Photoelectric effect
Photoelectrochemical devices
photoelectrochemistry
Polymers
Solar energy conversion
tandem photoelectrochemical (PEC) cells
Thin films
title Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Nanostructured%20Conjugated%20Microporous%20Polymer%20Application%20in%20a%20Tandem%20Photoelectrochemical%20Cell%20for%20Hydrogen%20Evolution%20Reaction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Barawi,%20Mariam&rft.date=2022-09-01&rft.volume=18&rft.issue=37&rft.spage=e2201351&rft.epage=n/a&rft.pages=e2201351-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202201351&rft_dat=%3Cproquest_cross%3E2714250155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714250155&rft_id=info:pmid/&rfr_iscdi=true