Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors
Ionically-conductive hydrogels are attracting increasing interest as skin-like sensors, however, the fabrication of ion-conductive hydrogels with excellent mechanical properties, high conductivity, self-adhesion and anti-freezing ability for high-performance sensors remains a challenge. Herein, a hi...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-11, Vol.220, p.90-96 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ionically-conductive hydrogels are attracting increasing interest as skin-like sensors, however, the fabrication of ion-conductive hydrogels with excellent mechanical properties, high conductivity, self-adhesion and anti-freezing ability for high-performance sensors remains a challenge. Herein, a highly ion-conductive hydrogel is prepared by introducing LiCl into polyacrylamide/hydroxypropyl methyl cellulose (PAM/HPMC) composite hydrogel. The introduction of LiCl simultaneously endows the PAM/HPMC/LiCl hydrogel with outstanding stretchability (1453 %), high tensile strength (135 kPa), skin-like elasticity (9.18 kPa), high conductivity (7.85 S/m), good adhesiveness and wide operating temperature range. Impressively, this ion-conductive hydrogel can be utilized in skin-like sensor, which achieves high strain sensitivity (GF = 11.19) with wide sensing ranges (up to 600 %), and excellent endurance over 250 consecutive stretching. As a result, the wearable sensor assembled from the hydrogels can be used to detect complex human activities with high stability even at −40 °C. This work promotes the development of ion-conductive hydrogels with broad operating temperature in advanced sensory platform.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.08.055 |