One-dimensional electric field structure of an outer gap accelerator — II. γ-ray production resulting from inverse Compton scattering
We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e−) and/or positrons...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 1999-09, Vol.308 (1), p.67-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 308 |
creator | Hirotani, K. Shibata, S. |
description | We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e−) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ-ray photons via inverse Compton (IC) scattering. These γ-rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ-ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates. |
doi_str_mv | 10.1046/j.1365-8711.1999.02697.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27027419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1046/j.1365-8711.1999.02697.x</oup_id><sourcerecordid>27027419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4747-ef4787be37da3f1464980b33fa932f449ef08b64152a0d4b5feb3be25dea023</originalsourceid><addsrcrecordid>eNqNkE1u1TAUhSMEEo_CHjxiluC_xMmAAQrQPqk_ElSoYmI5yXXlRxIH24H3Zh12Ad0J-2ARXQlOgxiBxOhaOuc79_okCSI4I5gXr3YZYUWeloKQjFRVlWFaVCLbP0o2DwKtiuJxssGYraanyTPvdxhjzmixSW4vRkg7M8DojR1Vj6CHNjjTIm2g75APbm7D7ABZjdSI7BzAoWs1IdW20etUsA7d39yh7TZDP3-kTh3Q5GwXqRiIHPi5D2a8RtrZAZnxGzgPqLbDFKLsWxViYNSfJ0-06j28-D2Pko_v313WJ-npxfG2fnOatlxwkYLmohQNMNEppgkveFXihjGtKkY15xVoXDYFJzlVuONNrqFhDdC8A4UpO0perqnxxK8z-CAH4-M_ejWCnb2kAlPBSRWN5WpsnfXegZaTM4NyB0mwXIqXO7n0K5dO5VK8fChe7iP6ekW_mx4O_83Js_MPyyvybOXtPP2DTv-2NV0p4wPs_3DKfZGFYCKXJ1ef5RV9i-vL-pMs2S834azG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27027419</pqid></control><display><type>article</type><title>One-dimensional electric field structure of an outer gap accelerator — II. γ-ray production resulting from inverse Compton scattering</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hirotani, K. ; Shibata, S.</creator><creatorcontrib>Hirotani, K. ; Shibata, S.</creatorcontrib><description>We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e−) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ-ray photons via inverse Compton (IC) scattering. These γ-rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ-ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1046/j.1365-8711.1999.02697.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>gamma-rays: theory ; magnetic fields ; pulsars: general</subject><ispartof>Monthly notices of the Royal Astronomical Society, 1999-09, Vol.308 (1), p.67-76</ispartof><rights>1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4747-ef4787be37da3f1464980b33fa932f449ef08b64152a0d4b5feb3be25dea023</citedby><cites>FETCH-LOGICAL-c4747-ef4787be37da3f1464980b33fa932f449ef08b64152a0d4b5feb3be25dea023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-8711.1999.02697.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-8711.1999.02697.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hirotani, K.</creatorcontrib><creatorcontrib>Shibata, S.</creatorcontrib><title>One-dimensional electric field structure of an outer gap accelerator — II. γ-ray production resulting from inverse Compton scattering</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e−) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ-ray photons via inverse Compton (IC) scattering. These γ-rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ-ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.</description><subject>gamma-rays: theory</subject><subject>magnetic fields</subject><subject>pulsars: general</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkE1u1TAUhSMEEo_CHjxiluC_xMmAAQrQPqk_ElSoYmI5yXXlRxIH24H3Zh12Ad0J-2ARXQlOgxiBxOhaOuc79_okCSI4I5gXr3YZYUWeloKQjFRVlWFaVCLbP0o2DwKtiuJxssGYraanyTPvdxhjzmixSW4vRkg7M8DojR1Vj6CHNjjTIm2g75APbm7D7ABZjdSI7BzAoWs1IdW20etUsA7d39yh7TZDP3-kTh3Q5GwXqRiIHPi5D2a8RtrZAZnxGzgPqLbDFKLsWxViYNSfJ0-06j28-D2Pko_v313WJ-npxfG2fnOatlxwkYLmohQNMNEppgkveFXihjGtKkY15xVoXDYFJzlVuONNrqFhDdC8A4UpO0perqnxxK8z-CAH4-M_ejWCnb2kAlPBSRWN5WpsnfXegZaTM4NyB0mwXIqXO7n0K5dO5VK8fChe7iP6ekW_mx4O_83Js_MPyyvybOXtPP2DTv-2NV0p4wPs_3DKfZGFYCKXJ1ef5RV9i-vL-pMs2S834azG</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Hirotani, K.</creator><creator>Shibata, S.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19990901</creationdate><title>One-dimensional electric field structure of an outer gap accelerator — II. γ-ray production resulting from inverse Compton scattering</title><author>Hirotani, K. ; Shibata, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4747-ef4787be37da3f1464980b33fa932f449ef08b64152a0d4b5feb3be25dea023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>gamma-rays: theory</topic><topic>magnetic fields</topic><topic>pulsars: general</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirotani, K.</creatorcontrib><creatorcontrib>Shibata, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirotani, K.</au><au>Shibata, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional electric field structure of an outer gap accelerator — II. γ-ray production resulting from inverse Compton scattering</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>1999-09-01</date><risdate>1999</risdate><volume>308</volume><issue>1</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e−) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ-ray photons via inverse Compton (IC) scattering. These γ-rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ-ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1046/j.1365-8711.1999.02697.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 1999-09, Vol.308 (1), p.67-76 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_27027419 |
source | Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete |
subjects | gamma-rays: theory magnetic fields pulsars: general |
title | One-dimensional electric field structure of an outer gap accelerator — II. γ-ray production resulting from inverse Compton scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20electric%20field%20structure%20of%20an%20outer%20gap%20accelerator%20%E2%80%94%20II.%20%CE%B3-ray%20production%20resulting%20from%20inverse%20Compton%20scattering&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Hirotani,%20K.&rft.date=1999-09-01&rft.volume=308&rft.issue=1&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1046/j.1365-8711.1999.02697.x&rft_dat=%3Cproquest_cross%3E27027419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27027419&rft_id=info:pmid/&rft_oup_id=10.1046/j.1365-8711.1999.02697.x&rfr_iscdi=true |