Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys

Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N 6 -threonylcarbamoyladenosine (p-ms 2 ct 6 A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biochemistry and biophysics 2022-12, Vol.80 (4), p.665-680
Hauptverfasser: Dound, Ambika S., Fandilolu, Prayagraj M., Sonawane, Kailas D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 4
container_start_page 665
container_title Cell biochemistry and biophysics
container_volume 80
creator Dound, Ambika S.
Fandilolu, Prayagraj M.
Sonawane, Kailas D.
description Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N 6 -threonylcarbamoyladenosine (p-ms 2 ct 6 A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms 2 ct 6 A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms 2 ct 6 A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms 2 ct 6 A. Further, molecular dynamics simulations of p-ms 2 ct 6 A revealed the role of ribose sugar ring puckering i.e. C2’-endo and C3’-endo on the structural dynamics of ms 2 ct 6 A side chain. The modified nucleotide p-ms 2 ct 6 A periodically prefers both the C2’-endo and C3’-endo sugar with ‘ anti’ and ‘syn’ conformations. This property of p-ms 2 ct 6 A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA Lys of Bacillus subtilis containing ms 2 ct 6 A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms 2 ct 6 A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms 2 ct 6 A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms 2 ct 6 A in recognition of the proper codons AAA/AAG during protein biosynthesis.
doi_str_mv 10.1007/s12013-022-01086-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702487660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724781342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-d7699f79febe53f9eea9213770ff716409a770fe702efea49298571c3ff866053</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEEqXwApwscSkHg_8kcXxcrYAi7S6rbTlHXmfcuGTtYDuH3HgNXo9X4AXqdJGQOHDyeOb3fRrNTFG8puQdJUS8j5QRyjFhDBNKmhqTJ8UFrSqZUw1_mmPSVFhSWT0vXsR4TzJJyvKi-H2TwqTTFNSAbuyds8Zq5TQgb9DaO-PDSSXrXS7vAxgIkIsRKdehgz36CPhg3R3eT_obhBwtuut5hIC2vstm0KHdpAfwyXaAql8_fuKtd37sfRx7lQAxvIXUz0PqrUfrWQ9Wo12Nb_sA3s2DVuGoTn4eVAfOR-sAXY34FJlO9ert0lMEl5BKiIvUo31GlnaRdWjlktW-y5-N9-PSWDrsVps5viyeGTVEePXnvSy-fvxwu77Gmy-fPq9XG6wZ5wl3opbSCGngCBU3EkBJRrkQxBhB65JItcQgCMuDUaVksqkE1dyYpq5JxS-Lq7PvGPz3CWJqTzZqGAblwE-xZVlZNiKzGX3zD3rvp5CnvlCsFA3lJcsUO1M6-BjzOtox2JMKc0tJu9xBe76DNm-3fbyDdrHmZ1EclwVB-Gv9H9UD5gG6Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724781342</pqid></control><display><type>article</type><title>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</title><source>SpringerLink</source><creator>Dound, Ambika S. ; Fandilolu, Prayagraj M. ; Sonawane, Kailas D.</creator><creatorcontrib>Dound, Ambika S. ; Fandilolu, Prayagraj M. ; Sonawane, Kailas D.</creatorcontrib><description>Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N 6 -threonylcarbamoyladenosine (p-ms 2 ct 6 A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms 2 ct 6 A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms 2 ct 6 A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms 2 ct 6 A. Further, molecular dynamics simulations of p-ms 2 ct 6 A revealed the role of ribose sugar ring puckering i.e. C2’-endo and C3’-endo on the structural dynamics of ms 2 ct 6 A side chain. The modified nucleotide p-ms 2 ct 6 A periodically prefers both the C2’-endo and C3’-endo sugar with ‘ anti’ and ‘syn’ conformations. This property of p-ms 2 ct 6 A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA Lys of Bacillus subtilis containing ms 2 ct 6 A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms 2 ct 6 A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms 2 ct 6 A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms 2 ct 6 A in recognition of the proper codons AAA/AAG during protein biosynthesis.</description><identifier>ISSN: 1085-9195</identifier><identifier>EISSN: 1559-0283</identifier><identifier>DOI: 10.1007/s12013-022-01086-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angles (geometry) ; Automation ; Base stacking ; Biochemistry ; Bioinformatics ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Biosynthesis ; Biotechnology ; Cell Biology ; Chains ; Codons ; Dynamic stability ; Dynamic structural analysis ; Efficiency ; Energy ; Geometry ; Hydrogen bonding ; Life Sciences ; Molecular conformation ; Molecular dynamics ; Nucleotides ; Optimization ; Original Paper ; Pharmacology/Toxicology ; Protein biosynthesis ; Proteins ; Quantum chemistry ; Ribose ; Simulation ; Structure-function relationships ; Sugar ; Transfer RNA</subject><ispartof>Cell biochemistry and biophysics, 2022-12, Vol.80 (4), p.665-680</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-d7699f79febe53f9eea9213770ff716409a770fe702efea49298571c3ff866053</cites><orcidid>0000-0003-0156-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12013-022-01086-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12013-022-01086-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dound, Ambika S.</creatorcontrib><creatorcontrib>Fandilolu, Prayagraj M.</creatorcontrib><creatorcontrib>Sonawane, Kailas D.</creatorcontrib><title>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</title><title>Cell biochemistry and biophysics</title><addtitle>Cell Biochem Biophys</addtitle><description>Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N 6 -threonylcarbamoyladenosine (p-ms 2 ct 6 A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms 2 ct 6 A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms 2 ct 6 A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms 2 ct 6 A. Further, molecular dynamics simulations of p-ms 2 ct 6 A revealed the role of ribose sugar ring puckering i.e. C2’-endo and C3’-endo on the structural dynamics of ms 2 ct 6 A side chain. The modified nucleotide p-ms 2 ct 6 A periodically prefers both the C2’-endo and C3’-endo sugar with ‘ anti’ and ‘syn’ conformations. This property of p-ms 2 ct 6 A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA Lys of Bacillus subtilis containing ms 2 ct 6 A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms 2 ct 6 A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms 2 ct 6 A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms 2 ct 6 A in recognition of the proper codons AAA/AAG during protein biosynthesis.</description><subject>Angles (geometry)</subject><subject>Automation</subject><subject>Base stacking</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chains</subject><subject>Codons</subject><subject>Dynamic stability</subject><subject>Dynamic structural analysis</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Geometry</subject><subject>Hydrogen bonding</subject><subject>Life Sciences</subject><subject>Molecular conformation</subject><subject>Molecular dynamics</subject><subject>Nucleotides</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Ribose</subject><subject>Simulation</subject><subject>Structure-function relationships</subject><subject>Sugar</subject><subject>Transfer RNA</subject><issn>1085-9195</issn><issn>1559-0283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks9u1DAQxiMEEqXwApwscSkHg_8kcXxcrYAi7S6rbTlHXmfcuGTtYDuH3HgNXo9X4AXqdJGQOHDyeOb3fRrNTFG8puQdJUS8j5QRyjFhDBNKmhqTJ8UFrSqZUw1_mmPSVFhSWT0vXsR4TzJJyvKi-H2TwqTTFNSAbuyds8Zq5TQgb9DaO-PDSSXrXS7vAxgIkIsRKdehgz36CPhg3R3eT_obhBwtuut5hIC2vstm0KHdpAfwyXaAql8_fuKtd37sfRx7lQAxvIXUz0PqrUfrWQ9Wo12Nb_sA3s2DVuGoTn4eVAfOR-sAXY34FJlO9ert0lMEl5BKiIvUo31GlnaRdWjlktW-y5-N9-PSWDrsVps5viyeGTVEePXnvSy-fvxwu77Gmy-fPq9XG6wZ5wl3opbSCGngCBU3EkBJRrkQxBhB65JItcQgCMuDUaVksqkE1dyYpq5JxS-Lq7PvGPz3CWJqTzZqGAblwE-xZVlZNiKzGX3zD3rvp5CnvlCsFA3lJcsUO1M6-BjzOtox2JMKc0tJu9xBe76DNm-3fbyDdrHmZ1EclwVB-Gv9H9UD5gG6Pw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dound, Ambika S.</creator><creator>Fandilolu, Prayagraj M.</creator><creator>Sonawane, Kailas D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0156-7466</orcidid></search><sort><creationdate>20221201</creationdate><title>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</title><author>Dound, Ambika S. ; Fandilolu, Prayagraj M. ; Sonawane, Kailas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-d7699f79febe53f9eea9213770ff716409a770fe702efea49298571c3ff866053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angles (geometry)</topic><topic>Automation</topic><topic>Base stacking</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chains</topic><topic>Codons</topic><topic>Dynamic stability</topic><topic>Dynamic structural analysis</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Geometry</topic><topic>Hydrogen bonding</topic><topic>Life Sciences</topic><topic>Molecular conformation</topic><topic>Molecular dynamics</topic><topic>Nucleotides</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Ribose</topic><topic>Simulation</topic><topic>Structure-function relationships</topic><topic>Sugar</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dound, Ambika S.</creatorcontrib><creatorcontrib>Fandilolu, Prayagraj M.</creatorcontrib><creatorcontrib>Sonawane, Kailas D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dound, Ambika S.</au><au>Fandilolu, Prayagraj M.</au><au>Sonawane, Kailas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</atitle><jtitle>Cell biochemistry and biophysics</jtitle><stitle>Cell Biochem Biophys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>80</volume><issue>4</issue><spage>665</spage><epage>680</epage><pages>665-680</pages><issn>1085-9195</issn><eissn>1559-0283</eissn><abstract>Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N 6 -threonylcarbamoyladenosine (p-ms 2 ct 6 A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms 2 ct 6 A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms 2 ct 6 A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms 2 ct 6 A. Further, molecular dynamics simulations of p-ms 2 ct 6 A revealed the role of ribose sugar ring puckering i.e. C2’-endo and C3’-endo on the structural dynamics of ms 2 ct 6 A side chain. The modified nucleotide p-ms 2 ct 6 A periodically prefers both the C2’-endo and C3’-endo sugar with ‘ anti’ and ‘syn’ conformations. This property of p-ms 2 ct 6 A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA Lys of Bacillus subtilis containing ms 2 ct 6 A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms 2 ct 6 A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms 2 ct 6 A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms 2 ct 6 A in recognition of the proper codons AAA/AAG during protein biosynthesis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12013-022-01086-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0156-7466</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1085-9195
ispartof Cell biochemistry and biophysics, 2022-12, Vol.80 (4), p.665-680
issn 1085-9195
1559-0283
language eng
recordid cdi_proquest_miscellaneous_2702487660
source SpringerLink
subjects Angles (geometry)
Automation
Base stacking
Biochemistry
Bioinformatics
Biological and Medical Physics
Biomedical and Life Sciences
Biophysics
Biosynthesis
Biotechnology
Cell Biology
Chains
Codons
Dynamic stability
Dynamic structural analysis
Efficiency
Energy
Geometry
Hydrogen bonding
Life Sciences
Molecular conformation
Molecular dynamics
Nucleotides
Optimization
Original Paper
Pharmacology/Toxicology
Protein biosynthesis
Proteins
Quantum chemistry
Ribose
Simulation
Structure-function relationships
Sugar
Transfer RNA
title Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Significance%20of%20Conformational%20Preferences%20and%20Ribose-Ring-Puckering%20of%20Hyper%20Modified%20Nucleotide%205%E2%80%99-Monophosphate%202-Methylthio%20Cyclic%20N6-Threonylcarbamoyladenosine%20(p-ms2ct6A)%20Present%20at%2037th%20Position%20in%20Anticodon%20Loop%20of%20tRNALys&rft.jtitle=Cell%20biochemistry%20and%20biophysics&rft.au=Dound,%20Ambika%20S.&rft.date=2022-12-01&rft.volume=80&rft.issue=4&rft.spage=665&rft.epage=680&rft.pages=665-680&rft.issn=1085-9195&rft.eissn=1559-0283&rft_id=info:doi/10.1007/s12013-022-01086-0&rft_dat=%3Cproquest_cross%3E2724781342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724781342&rft_id=info:pmid/&rfr_iscdi=true