Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys
Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N 6 -threonylcarbamoyladenosine (p-ms 2 ct 6 A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics...
Gespeichert in:
Veröffentlicht in: | Cell biochemistry and biophysics 2022-12, Vol.80 (4), p.665-680 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | 4 |
container_start_page | 665 |
container_title | Cell biochemistry and biophysics |
container_volume | 80 |
creator | Dound, Ambika S. Fandilolu, Prayagraj M. Sonawane, Kailas D. |
description | Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N
6
-threonylcarbamoyladenosine (p-ms
2
ct
6
A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms
2
ct
6
A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms
2
ct
6
A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms
2
ct
6
A. Further, molecular dynamics simulations of p-ms
2
ct
6
A revealed the role of ribose sugar ring puckering i.e.
C2’-endo
and
C3’-endo
on the structural dynamics of ms
2
ct
6
A side chain. The modified nucleotide p-ms
2
ct
6
A periodically prefers both the
C2’-endo
and
C3’-endo
sugar with ‘
anti’
and
‘syn’
conformations. This property of p-ms
2
ct
6
A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA
Lys
of
Bacillus subtilis
containing ms
2
ct
6
A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms
2
ct
6
A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms
2
ct
6
A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms
2
ct
6
A in recognition of the proper codons AAA/AAG during protein biosynthesis. |
doi_str_mv | 10.1007/s12013-022-01086-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702487660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724781342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-d7699f79febe53f9eea9213770ff716409a770fe702efea49298571c3ff866053</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEEqXwApwscSkHg_8kcXxcrYAi7S6rbTlHXmfcuGTtYDuH3HgNXo9X4AXqdJGQOHDyeOb3fRrNTFG8puQdJUS8j5QRyjFhDBNKmhqTJ8UFrSqZUw1_mmPSVFhSWT0vXsR4TzJJyvKi-H2TwqTTFNSAbuyds8Zq5TQgb9DaO-PDSSXrXS7vAxgIkIsRKdehgz36CPhg3R3eT_obhBwtuut5hIC2vstm0KHdpAfwyXaAql8_fuKtd37sfRx7lQAxvIXUz0PqrUfrWQ9Wo12Nb_sA3s2DVuGoTn4eVAfOR-sAXY34FJlO9ert0lMEl5BKiIvUo31GlnaRdWjlktW-y5-N9-PSWDrsVps5viyeGTVEePXnvSy-fvxwu77Gmy-fPq9XG6wZ5wl3opbSCGngCBU3EkBJRrkQxBhB65JItcQgCMuDUaVksqkE1dyYpq5JxS-Lq7PvGPz3CWJqTzZqGAblwE-xZVlZNiKzGX3zD3rvp5CnvlCsFA3lJcsUO1M6-BjzOtox2JMKc0tJu9xBe76DNm-3fbyDdrHmZ1EclwVB-Gv9H9UD5gG6Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724781342</pqid></control><display><type>article</type><title>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</title><source>SpringerLink</source><creator>Dound, Ambika S. ; Fandilolu, Prayagraj M. ; Sonawane, Kailas D.</creator><creatorcontrib>Dound, Ambika S. ; Fandilolu, Prayagraj M. ; Sonawane, Kailas D.</creatorcontrib><description>Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N
6
-threonylcarbamoyladenosine (p-ms
2
ct
6
A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms
2
ct
6
A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms
2
ct
6
A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms
2
ct
6
A. Further, molecular dynamics simulations of p-ms
2
ct
6
A revealed the role of ribose sugar ring puckering i.e.
C2’-endo
and
C3’-endo
on the structural dynamics of ms
2
ct
6
A side chain. The modified nucleotide p-ms
2
ct
6
A periodically prefers both the
C2’-endo
and
C3’-endo
sugar with ‘
anti’
and
‘syn’
conformations. This property of p-ms
2
ct
6
A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA
Lys
of
Bacillus subtilis
containing ms
2
ct
6
A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms
2
ct
6
A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms
2
ct
6
A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms
2
ct
6
A in recognition of the proper codons AAA/AAG during protein biosynthesis.</description><identifier>ISSN: 1085-9195</identifier><identifier>EISSN: 1559-0283</identifier><identifier>DOI: 10.1007/s12013-022-01086-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angles (geometry) ; Automation ; Base stacking ; Biochemistry ; Bioinformatics ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Biosynthesis ; Biotechnology ; Cell Biology ; Chains ; Codons ; Dynamic stability ; Dynamic structural analysis ; Efficiency ; Energy ; Geometry ; Hydrogen bonding ; Life Sciences ; Molecular conformation ; Molecular dynamics ; Nucleotides ; Optimization ; Original Paper ; Pharmacology/Toxicology ; Protein biosynthesis ; Proteins ; Quantum chemistry ; Ribose ; Simulation ; Structure-function relationships ; Sugar ; Transfer RNA</subject><ispartof>Cell biochemistry and biophysics, 2022-12, Vol.80 (4), p.665-680</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-d7699f79febe53f9eea9213770ff716409a770fe702efea49298571c3ff866053</cites><orcidid>0000-0003-0156-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12013-022-01086-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12013-022-01086-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dound, Ambika S.</creatorcontrib><creatorcontrib>Fandilolu, Prayagraj M.</creatorcontrib><creatorcontrib>Sonawane, Kailas D.</creatorcontrib><title>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</title><title>Cell biochemistry and biophysics</title><addtitle>Cell Biochem Biophys</addtitle><description>Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N
6
-threonylcarbamoyladenosine (p-ms
2
ct
6
A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms
2
ct
6
A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms
2
ct
6
A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms
2
ct
6
A. Further, molecular dynamics simulations of p-ms
2
ct
6
A revealed the role of ribose sugar ring puckering i.e.
C2’-endo
and
C3’-endo
on the structural dynamics of ms
2
ct
6
A side chain. The modified nucleotide p-ms
2
ct
6
A periodically prefers both the
C2’-endo
and
C3’-endo
sugar with ‘
anti’
and
‘syn’
conformations. This property of p-ms
2
ct
6
A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA
Lys
of
Bacillus subtilis
containing ms
2
ct
6
A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms
2
ct
6
A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms
2
ct
6
A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms
2
ct
6
A in recognition of the proper codons AAA/AAG during protein biosynthesis.</description><subject>Angles (geometry)</subject><subject>Automation</subject><subject>Base stacking</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chains</subject><subject>Codons</subject><subject>Dynamic stability</subject><subject>Dynamic structural analysis</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Geometry</subject><subject>Hydrogen bonding</subject><subject>Life Sciences</subject><subject>Molecular conformation</subject><subject>Molecular dynamics</subject><subject>Nucleotides</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Ribose</subject><subject>Simulation</subject><subject>Structure-function relationships</subject><subject>Sugar</subject><subject>Transfer RNA</subject><issn>1085-9195</issn><issn>1559-0283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks9u1DAQxiMEEqXwApwscSkHg_8kcXxcrYAi7S6rbTlHXmfcuGTtYDuH3HgNXo9X4AXqdJGQOHDyeOb3fRrNTFG8puQdJUS8j5QRyjFhDBNKmhqTJ8UFrSqZUw1_mmPSVFhSWT0vXsR4TzJJyvKi-H2TwqTTFNSAbuyds8Zq5TQgb9DaO-PDSSXrXS7vAxgIkIsRKdehgz36CPhg3R3eT_obhBwtuut5hIC2vstm0KHdpAfwyXaAql8_fuKtd37sfRx7lQAxvIXUz0PqrUfrWQ9Wo12Nb_sA3s2DVuGoTn4eVAfOR-sAXY34FJlO9ert0lMEl5BKiIvUo31GlnaRdWjlktW-y5-N9-PSWDrsVps5viyeGTVEePXnvSy-fvxwu77Gmy-fPq9XG6wZ5wl3opbSCGngCBU3EkBJRrkQxBhB65JItcQgCMuDUaVksqkE1dyYpq5JxS-Lq7PvGPz3CWJqTzZqGAblwE-xZVlZNiKzGX3zD3rvp5CnvlCsFA3lJcsUO1M6-BjzOtox2JMKc0tJu9xBe76DNm-3fbyDdrHmZ1EclwVB-Gv9H9UD5gG6Pw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dound, Ambika S.</creator><creator>Fandilolu, Prayagraj M.</creator><creator>Sonawane, Kailas D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0156-7466</orcidid></search><sort><creationdate>20221201</creationdate><title>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</title><author>Dound, Ambika S. ; Fandilolu, Prayagraj M. ; Sonawane, Kailas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-d7699f79febe53f9eea9213770ff716409a770fe702efea49298571c3ff866053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angles (geometry)</topic><topic>Automation</topic><topic>Base stacking</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chains</topic><topic>Codons</topic><topic>Dynamic stability</topic><topic>Dynamic structural analysis</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Geometry</topic><topic>Hydrogen bonding</topic><topic>Life Sciences</topic><topic>Molecular conformation</topic><topic>Molecular dynamics</topic><topic>Nucleotides</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Ribose</topic><topic>Simulation</topic><topic>Structure-function relationships</topic><topic>Sugar</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dound, Ambika S.</creatorcontrib><creatorcontrib>Fandilolu, Prayagraj M.</creatorcontrib><creatorcontrib>Sonawane, Kailas D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dound, Ambika S.</au><au>Fandilolu, Prayagraj M.</au><au>Sonawane, Kailas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys</atitle><jtitle>Cell biochemistry and biophysics</jtitle><stitle>Cell Biochem Biophys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>80</volume><issue>4</issue><spage>665</spage><epage>680</epage><pages>665-680</pages><issn>1085-9195</issn><eissn>1559-0283</eissn><abstract>Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N
6
-threonylcarbamoyladenosine (p-ms
2
ct
6
A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms
2
ct
6
A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms
2
ct
6
A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms
2
ct
6
A. Further, molecular dynamics simulations of p-ms
2
ct
6
A revealed the role of ribose sugar ring puckering i.e.
C2’-endo
and
C3’-endo
on the structural dynamics of ms
2
ct
6
A side chain. The modified nucleotide p-ms
2
ct
6
A periodically prefers both the
C2’-endo
and
C3’-endo
sugar with ‘
anti’
and
‘syn’
conformations. This property of p-ms
2
ct
6
A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA
Lys
of
Bacillus subtilis
containing ms
2
ct
6
A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms
2
ct
6
A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms
2
ct
6
A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms
2
ct
6
A in recognition of the proper codons AAA/AAG during protein biosynthesis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12013-022-01086-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0156-7466</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-9195 |
ispartof | Cell biochemistry and biophysics, 2022-12, Vol.80 (4), p.665-680 |
issn | 1085-9195 1559-0283 |
language | eng |
recordid | cdi_proquest_miscellaneous_2702487660 |
source | SpringerLink |
subjects | Angles (geometry) Automation Base stacking Biochemistry Bioinformatics Biological and Medical Physics Biomedical and Life Sciences Biophysics Biosynthesis Biotechnology Cell Biology Chains Codons Dynamic stability Dynamic structural analysis Efficiency Energy Geometry Hydrogen bonding Life Sciences Molecular conformation Molecular dynamics Nucleotides Optimization Original Paper Pharmacology/Toxicology Protein biosynthesis Proteins Quantum chemistry Ribose Simulation Structure-function relationships Sugar Transfer RNA |
title | Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Significance%20of%20Conformational%20Preferences%20and%20Ribose-Ring-Puckering%20of%20Hyper%20Modified%20Nucleotide%205%E2%80%99-Monophosphate%202-Methylthio%20Cyclic%20N6-Threonylcarbamoyladenosine%20(p-ms2ct6A)%20Present%20at%2037th%20Position%20in%20Anticodon%20Loop%20of%20tRNALys&rft.jtitle=Cell%20biochemistry%20and%20biophysics&rft.au=Dound,%20Ambika%20S.&rft.date=2022-12-01&rft.volume=80&rft.issue=4&rft.spage=665&rft.epage=680&rft.pages=665-680&rft.issn=1085-9195&rft.eissn=1559-0283&rft_id=info:doi/10.1007/s12013-022-01086-0&rft_dat=%3Cproquest_cross%3E2724781342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724781342&rft_id=info:pmid/&rfr_iscdi=true |