Modeling high-temperature stress-strain behavior of cast aluminum alloys

A modified two-state-variable unified constitutive model is presented to model the high-temperature stress-strain behavior of a 319 cast Al alloy with a T7 heat treatment. A systematic method is outlined, with which one can determine the material parameters used in the experimentally based model. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1999, Vol.30 (1), p.133-146
Hauptverfasser: SMITH, T. J, MAIER, H. J, HUSEYIN SEHITOGLU, FLEURY, E, ALLISON, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 133
container_title Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
container_volume 30
creator SMITH, T. J
MAIER, H. J
HUSEYIN SEHITOGLU
FLEURY, E
ALLISON, J
description A modified two-state-variable unified constitutive model is presented to model the high-temperature stress-strain behavior of a 319 cast Al alloy with a T7 heat treatment. A systematic method is outlined, with which one can determine the material parameters used in the experimentally based model. The microstructural processes affecting the material behavior were identified using TEM and then correlated to the model parameters. The stress-strain behavior was found to be dominated by the decomposition of the metastable theta-prime precipitates within the dendrites and the subsequent coarsening of the theta phase, manifested through remarkable softening with cycling and time. The model was found to accurately simulate experimental stress-strain behavior such as strain-rate sensitivity, cyclic softening, aging effects, transient material behavior, and stress relaxation, in addition to capturing deformation mechanisms and microstructural changes as a function of temperature and inelastic strain rate. (Author)
doi_str_mv 10.1007/s11661-999-0201-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27024099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27024099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-da7f40e4b922e09d0471853b9cdd18e53c3ddcf18c53cb674ffeccbd0d23c35b3</originalsourceid><addsrcrecordid>eNqFkUFrFTEUhQdRsFZ_gLtRxF3svUkmeVlKqVaodFPXIZNk-lJmJs_cjPD-fVNeQXDj6hy43zlwOV33HuELAugLQlQKmTGGAQdkxxfdGQ5SMDQSXjYPWrBBcfG6e0P0AABohDrrrn_mEOe03vf7dL9nNS6HWFzdSuyplkjEmri09mPcuz8plz5PvXdUezdvS1q3pZk5H-lt92pyM8V3z3re_fp2dXd5zW5uv_-4_HrDvNjpyoLTk4QoR8N5BBNAatwNYjQ-BNzFQXgRgp9w55sdlZbTFL0fAwTeTsMozrsPp95MNVnyqUa_93ldo69WoALNG_P5xBxK_r1FqnZJ5OM8uzXmjSzXwCUY839QGcNRYgM__gM-5K2s7VHLUWjQSqoG4QnyJROVONlDSYsrR4tgn1ayp5VsW8k-rWSPLfPpudiRd_NU3OoT_Q0qIzTn4hHAaZJi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213707646</pqid></control><display><type>article</type><title>Modeling high-temperature stress-strain behavior of cast aluminum alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>SMITH, T. J ; MAIER, H. J ; HUSEYIN SEHITOGLU ; FLEURY, E ; ALLISON, J</creator><creatorcontrib>SMITH, T. J ; MAIER, H. J ; HUSEYIN SEHITOGLU ; FLEURY, E ; ALLISON, J</creatorcontrib><description>A modified two-state-variable unified constitutive model is presented to model the high-temperature stress-strain behavior of a 319 cast Al alloy with a T7 heat treatment. A systematic method is outlined, with which one can determine the material parameters used in the experimentally based model. The microstructural processes affecting the material behavior were identified using TEM and then correlated to the model parameters. The stress-strain behavior was found to be dominated by the decomposition of the metastable theta-prime precipitates within the dendrites and the subsequent coarsening of the theta phase, manifested through remarkable softening with cycling and time. The model was found to accurately simulate experimental stress-strain behavior such as strain-rate sensitivity, cyclic softening, aging effects, transient material behavior, and stress relaxation, in addition to capturing deformation mechanisms and microstructural changes as a function of temperature and inelastic strain rate. (Author)</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-999-0201-y</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>ALUMINIUM BASE ALLOYS ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; DENDRITES ; Elasticity and anelasticity ; Elasticity and anelasticity, stress-strain relations ; Exact sciences and technology ; MATERIALS SCIENCE ; MATHEMATICAL MODELS ; MECHANICAL PROPERTIES ; Metals. Metallurgy ; MICROSTRUCTURE ; Physics ; PRECIPITATION ; STRAIN RATE ; STRAINS ; STRESSES ; TEMPERATURE DEPENDENCE ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999, Vol.30 (1), p.133-146</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Jan 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-da7f40e4b922e09d0471853b9cdd18e53c3ddcf18c53cb674ffeccbd0d23c35b3</citedby><cites>FETCH-LOGICAL-c387t-da7f40e4b922e09d0471853b9cdd18e53c3ddcf18c53cb674ffeccbd0d23c35b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1693722$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/316072$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SMITH, T. J</creatorcontrib><creatorcontrib>MAIER, H. J</creatorcontrib><creatorcontrib>HUSEYIN SEHITOGLU</creatorcontrib><creatorcontrib>FLEURY, E</creatorcontrib><creatorcontrib>ALLISON, J</creatorcontrib><title>Modeling high-temperature stress-strain behavior of cast aluminum alloys</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>A modified two-state-variable unified constitutive model is presented to model the high-temperature stress-strain behavior of a 319 cast Al alloy with a T7 heat treatment. A systematic method is outlined, with which one can determine the material parameters used in the experimentally based model. The microstructural processes affecting the material behavior were identified using TEM and then correlated to the model parameters. The stress-strain behavior was found to be dominated by the decomposition of the metastable theta-prime precipitates within the dendrites and the subsequent coarsening of the theta phase, manifested through remarkable softening with cycling and time. The model was found to accurately simulate experimental stress-strain behavior such as strain-rate sensitivity, cyclic softening, aging effects, transient material behavior, and stress relaxation, in addition to capturing deformation mechanisms and microstructural changes as a function of temperature and inelastic strain rate. (Author)</description><subject>ALUMINIUM BASE ALLOYS</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DENDRITES</subject><subject>Elasticity and anelasticity</subject><subject>Elasticity and anelasticity, stress-strain relations</subject><subject>Exact sciences and technology</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL MODELS</subject><subject>MECHANICAL PROPERTIES</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>Physics</subject><subject>PRECIPITATION</subject><subject>STRAIN RATE</subject><subject>STRAINS</subject><subject>STRESSES</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUFrFTEUhQdRsFZ_gLtRxF3svUkmeVlKqVaodFPXIZNk-lJmJs_cjPD-fVNeQXDj6hy43zlwOV33HuELAugLQlQKmTGGAQdkxxfdGQ5SMDQSXjYPWrBBcfG6e0P0AABohDrrrn_mEOe03vf7dL9nNS6HWFzdSuyplkjEmri09mPcuz8plz5PvXdUezdvS1q3pZk5H-lt92pyM8V3z3re_fp2dXd5zW5uv_-4_HrDvNjpyoLTk4QoR8N5BBNAatwNYjQ-BNzFQXgRgp9w55sdlZbTFL0fAwTeTsMozrsPp95MNVnyqUa_93ldo69WoALNG_P5xBxK_r1FqnZJ5OM8uzXmjSzXwCUY839QGcNRYgM__gM-5K2s7VHLUWjQSqoG4QnyJROVONlDSYsrR4tgn1ayp5VsW8k-rWSPLfPpudiRd_NU3OoT_Q0qIzTn4hHAaZJi</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>SMITH, T. J</creator><creator>MAIER, H. J</creator><creator>HUSEYIN SEHITOGLU</creator><creator>FLEURY, E</creator><creator>ALLISON, J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>FR3</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>1999</creationdate><title>Modeling high-temperature stress-strain behavior of cast aluminum alloys</title><author>SMITH, T. J ; MAIER, H. J ; HUSEYIN SEHITOGLU ; FLEURY, E ; ALLISON, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-da7f40e4b922e09d0471853b9cdd18e53c3ddcf18c53cb674ffeccbd0d23c35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ALUMINIUM BASE ALLOYS</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DENDRITES</topic><topic>Elasticity and anelasticity</topic><topic>Elasticity and anelasticity, stress-strain relations</topic><topic>Exact sciences and technology</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL MODELS</topic><topic>MECHANICAL PROPERTIES</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>Physics</topic><topic>PRECIPITATION</topic><topic>STRAIN RATE</topic><topic>STRAINS</topic><topic>STRESSES</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMITH, T. J</creatorcontrib><creatorcontrib>MAIER, H. J</creatorcontrib><creatorcontrib>HUSEYIN SEHITOGLU</creatorcontrib><creatorcontrib>FLEURY, E</creatorcontrib><creatorcontrib>ALLISON, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMITH, T. J</au><au>MAIER, H. J</au><au>HUSEYIN SEHITOGLU</au><au>FLEURY, E</au><au>ALLISON, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling high-temperature stress-strain behavior of cast aluminum alloys</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1999</date><risdate>1999</risdate><volume>30</volume><issue>1</issue><spage>133</spage><epage>146</epage><pages>133-146</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>A modified two-state-variable unified constitutive model is presented to model the high-temperature stress-strain behavior of a 319 cast Al alloy with a T7 heat treatment. A systematic method is outlined, with which one can determine the material parameters used in the experimentally based model. The microstructural processes affecting the material behavior were identified using TEM and then correlated to the model parameters. The stress-strain behavior was found to be dominated by the decomposition of the metastable theta-prime precipitates within the dendrites and the subsequent coarsening of the theta phase, manifested through remarkable softening with cycling and time. The model was found to accurately simulate experimental stress-strain behavior such as strain-rate sensitivity, cyclic softening, aging effects, transient material behavior, and stress relaxation, in addition to capturing deformation mechanisms and microstructural changes as a function of temperature and inelastic strain rate. (Author)</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-999-0201-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999, Vol.30 (1), p.133-146
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_27024099
source SpringerLink Journals - AutoHoldings
subjects ALUMINIUM BASE ALLOYS
Applied sciences
Cross-disciplinary physics: materials science
rheology
DENDRITES
Elasticity and anelasticity
Elasticity and anelasticity, stress-strain relations
Exact sciences and technology
MATERIALS SCIENCE
MATHEMATICAL MODELS
MECHANICAL PROPERTIES
Metals. Metallurgy
MICROSTRUCTURE
Physics
PRECIPITATION
STRAIN RATE
STRAINS
STRESSES
TEMPERATURE DEPENDENCE
Treatment of materials and its effects on microstructure and properties
title Modeling high-temperature stress-strain behavior of cast aluminum alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20high-temperature%20stress-strain%20behavior%20of%20cast%20aluminum%20alloys&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=SMITH,%20T.%20J&rft.date=1999&rft.volume=30&rft.issue=1&rft.spage=133&rft.epage=146&rft.pages=133-146&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-999-0201-y&rft_dat=%3Cproquest_osti_%3E27024099%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213707646&rft_id=info:pmid/&rfr_iscdi=true