Turbulent Shear Stress Effects on Plant Cell Suspension Cultures

A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures ( Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2001-11, Vol.79 (8), p.867-875
Hauptverfasser: Sowana, D.D., Williams, D.R.G., Dunlop, E.H., Dally, B.B., O’Neill, B.K., Fletcher, D.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 8
container_start_page 867
container_title Chemical engineering research & design
container_volume 79
creator Sowana, D.D.
Williams, D.R.G.
Dunlop, E.H.
Dally, B.B.
O’Neill, B.K.
Fletcher, D.F.
description A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures ( Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg –1 and the total energy dissipation is 10 4J kg –1. These values are slightly higher than those reported earlier 1–2.
doi_str_mv 10.1205/02638760152721370
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27022013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876201721235</els_id><sourcerecordid>598899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxfegYK3-Ad5y0Vt09iPZBC9KqB8gKLSel81mgitpUncSwf_eLS14EPQ08Ob33gyPsTMOl1xAdgUil4XOgWdCCy41HLDZVkujKI7YMdE7AHCtihm7WU2hnjrsx2T5hjYkyzEgUbJoW3QjJUOfvHQ2bivsumQ50QZ78lGtpm6cInrCDlvbEZ7u55y93i1W1UP69Hz_WN0-pU4JNaa6KXWrZamwkFwpBKdrLUDl3HEoEUoNvERdgrS5VEo0nKtagmutklntGjlnF7vcTRg-JqTRrD25-JTtcZjICA1CAJf_g1wVUuY6gnwHujAQBWzNJvi1DV-Gg9kWaX4VGT3n-3BLznZtsL3z9GOUKtN5uc2-3nEYK_n0GAw5j73DxofYq2kG_8eVb5y9hKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21483367</pqid></control><display><type>article</type><title>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sowana, D.D. ; Williams, D.R.G. ; Dunlop, E.H. ; Dally, B.B. ; O’Neill, B.K. ; Fletcher, D.F.</creator><creatorcontrib>Sowana, D.D. ; Williams, D.R.G. ; Dunlop, E.H. ; Dally, B.B. ; O’Neill, B.K. ; Fletcher, D.F.</creatorcontrib><description>A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures ( Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg –1 and the total energy dissipation is 10 4J kg –1. These values are slightly higher than those reported earlier 1–2.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1205/02638760152721370</identifier><identifier>CODEN: CERDEE</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Biological and medical sciences ; Bioreactors ; Biotechnology ; cell damage ; Computational fluid dynamics ; Computer simulation ; Energy dissipation ; Eukaryotic cell cultures ; Fundamental and applied biological sciences. Psychology ; hydrodynamic stress ; Impellers ; local energy dissipation ; Methods. Procedures. Technologies ; Miscellaneous ; plant cell culture ; Plant cells and fungal cells ; Shear stress ; Turbulence ; Wakes</subject><ispartof>Chemical engineering research &amp; design, 2001-11, Vol.79 (8), p.867-875</ispartof><rights>2001 The Institution of Chemical Engineers</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</citedby><cites>FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1205/02638760152721370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23928,23929,25138,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13457697$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowana, D.D.</creatorcontrib><creatorcontrib>Williams, D.R.G.</creatorcontrib><creatorcontrib>Dunlop, E.H.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>O’Neill, B.K.</creatorcontrib><creatorcontrib>Fletcher, D.F.</creatorcontrib><title>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</title><title>Chemical engineering research &amp; design</title><description>A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures ( Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg –1 and the total energy dissipation is 10 4J kg –1. These values are slightly higher than those reported earlier 1–2.</description><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>cell damage</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Energy dissipation</subject><subject>Eukaryotic cell cultures</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hydrodynamic stress</subject><subject>Impellers</subject><subject>local energy dissipation</subject><subject>Methods. Procedures. Technologies</subject><subject>Miscellaneous</subject><subject>plant cell culture</subject><subject>Plant cells and fungal cells</subject><subject>Shear stress</subject><subject>Turbulence</subject><subject>Wakes</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxfegYK3-Ad5y0Vt09iPZBC9KqB8gKLSel81mgitpUncSwf_eLS14EPQ08Ob33gyPsTMOl1xAdgUil4XOgWdCCy41HLDZVkujKI7YMdE7AHCtihm7WU2hnjrsx2T5hjYkyzEgUbJoW3QjJUOfvHQ2bivsumQ50QZ78lGtpm6cInrCDlvbEZ7u55y93i1W1UP69Hz_WN0-pU4JNaa6KXWrZamwkFwpBKdrLUDl3HEoEUoNvERdgrS5VEo0nKtagmutklntGjlnF7vcTRg-JqTRrD25-JTtcZjICA1CAJf_g1wVUuY6gnwHujAQBWzNJvi1DV-Gg9kWaX4VGT3n-3BLznZtsL3z9GOUKtN5uc2-3nEYK_n0GAw5j73DxofYq2kG_8eVb5y9hKc</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Sowana, D.D.</creator><creator>Williams, D.R.G.</creator><creator>Dunlop, E.H.</creator><creator>Dally, B.B.</creator><creator>O’Neill, B.K.</creator><creator>Fletcher, D.F.</creator><general>Elsevier B.V</general><general>Institution of Chemical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20011101</creationdate><title>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</title><author>Sowana, D.D. ; Williams, D.R.G. ; Dunlop, E.H. ; Dally, B.B. ; O’Neill, B.K. ; Fletcher, D.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>cell damage</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Energy dissipation</topic><topic>Eukaryotic cell cultures</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hydrodynamic stress</topic><topic>Impellers</topic><topic>local energy dissipation</topic><topic>Methods. Procedures. Technologies</topic><topic>Miscellaneous</topic><topic>plant cell culture</topic><topic>Plant cells and fungal cells</topic><topic>Shear stress</topic><topic>Turbulence</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowana, D.D.</creatorcontrib><creatorcontrib>Williams, D.R.G.</creatorcontrib><creatorcontrib>Dunlop, E.H.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>O’Neill, B.K.</creatorcontrib><creatorcontrib>Fletcher, D.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowana, D.D.</au><au>Williams, D.R.G.</au><au>Dunlop, E.H.</au><au>Dally, B.B.</au><au>O’Neill, B.K.</au><au>Fletcher, D.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>79</volume><issue>8</issue><spage>867</spage><epage>875</epage><pages>867-875</pages><issn>0263-8762</issn><coden>CERDEE</coden><abstract>A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures ( Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg –1 and the total energy dissipation is 10 4J kg –1. These values are slightly higher than those reported earlier 1–2.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1205/02638760152721370</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2001-11, Vol.79 (8), p.867-875
issn 0263-8762
language eng
recordid cdi_proquest_miscellaneous_27022013
source ScienceDirect Journals (5 years ago - present)
subjects Biological and medical sciences
Bioreactors
Biotechnology
cell damage
Computational fluid dynamics
Computer simulation
Energy dissipation
Eukaryotic cell cultures
Fundamental and applied biological sciences. Psychology
hydrodynamic stress
Impellers
local energy dissipation
Methods. Procedures. Technologies
Miscellaneous
plant cell culture
Plant cells and fungal cells
Shear stress
Turbulence
Wakes
title Turbulent Shear Stress Effects on Plant Cell Suspension Cultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20Shear%20Stress%20Effects%20on%20Plant%20Cell%20Suspension%20Cultures&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Sowana,%20D.D.&rft.date=2001-11-01&rft.volume=79&rft.issue=8&rft.spage=867&rft.epage=875&rft.pages=867-875&rft.issn=0263-8762&rft.coden=CERDEE&rft_id=info:doi/10.1205/02638760152721370&rft_dat=%3Cproquest_cross%3E598899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21483367&rft_id=info:pmid/&rft_els_id=S0263876201721235&rfr_iscdi=true