Turbulent Shear Stress Effects on Plant Cell Suspension Cultures
A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures ( Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stir...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2001-11, Vol.79 (8), p.867-875 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 875 |
---|---|
container_issue | 8 |
container_start_page | 867 |
container_title | Chemical engineering research & design |
container_volume | 79 |
creator | Sowana, D.D. Williams, D.R.G. Dunlop, E.H. Dally, B.B. O’Neill, B.K. Fletcher, D.F. |
description | A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures (
Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg
–1 and the total energy dissipation is 10
4J kg
–1. These values are slightly higher than those reported earlier
1–2. |
doi_str_mv | 10.1205/02638760152721370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27022013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876201721235</els_id><sourcerecordid>598899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxfegYK3-Ad5y0Vt09iPZBC9KqB8gKLSel81mgitpUncSwf_eLS14EPQ08Ob33gyPsTMOl1xAdgUil4XOgWdCCy41HLDZVkujKI7YMdE7AHCtihm7WU2hnjrsx2T5hjYkyzEgUbJoW3QjJUOfvHQ2bivsumQ50QZ78lGtpm6cInrCDlvbEZ7u55y93i1W1UP69Hz_WN0-pU4JNaa6KXWrZamwkFwpBKdrLUDl3HEoEUoNvERdgrS5VEo0nKtagmutklntGjlnF7vcTRg-JqTRrD25-JTtcZjICA1CAJf_g1wVUuY6gnwHujAQBWzNJvi1DV-Gg9kWaX4VGT3n-3BLznZtsL3z9GOUKtN5uc2-3nEYK_n0GAw5j73DxofYq2kG_8eVb5y9hKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21483367</pqid></control><display><type>article</type><title>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sowana, D.D. ; Williams, D.R.G. ; Dunlop, E.H. ; Dally, B.B. ; O’Neill, B.K. ; Fletcher, D.F.</creator><creatorcontrib>Sowana, D.D. ; Williams, D.R.G. ; Dunlop, E.H. ; Dally, B.B. ; O’Neill, B.K. ; Fletcher, D.F.</creatorcontrib><description>A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures (
Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg
–1 and the total energy dissipation is 10
4J kg
–1. These values are slightly higher than those reported earlier
1–2.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1205/02638760152721370</identifier><identifier>CODEN: CERDEE</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Biological and medical sciences ; Bioreactors ; Biotechnology ; cell damage ; Computational fluid dynamics ; Computer simulation ; Energy dissipation ; Eukaryotic cell cultures ; Fundamental and applied biological sciences. Psychology ; hydrodynamic stress ; Impellers ; local energy dissipation ; Methods. Procedures. Technologies ; Miscellaneous ; plant cell culture ; Plant cells and fungal cells ; Shear stress ; Turbulence ; Wakes</subject><ispartof>Chemical engineering research & design, 2001-11, Vol.79 (8), p.867-875</ispartof><rights>2001 The Institution of Chemical Engineers</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</citedby><cites>FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1205/02638760152721370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23928,23929,25138,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13457697$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowana, D.D.</creatorcontrib><creatorcontrib>Williams, D.R.G.</creatorcontrib><creatorcontrib>Dunlop, E.H.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>O’Neill, B.K.</creatorcontrib><creatorcontrib>Fletcher, D.F.</creatorcontrib><title>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</title><title>Chemical engineering research & design</title><description>A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures (
Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg
–1 and the total energy dissipation is 10
4J kg
–1. These values are slightly higher than those reported earlier
1–2.</description><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>cell damage</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Energy dissipation</subject><subject>Eukaryotic cell cultures</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hydrodynamic stress</subject><subject>Impellers</subject><subject>local energy dissipation</subject><subject>Methods. Procedures. Technologies</subject><subject>Miscellaneous</subject><subject>plant cell culture</subject><subject>Plant cells and fungal cells</subject><subject>Shear stress</subject><subject>Turbulence</subject><subject>Wakes</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxfegYK3-Ad5y0Vt09iPZBC9KqB8gKLSel81mgitpUncSwf_eLS14EPQ08Ob33gyPsTMOl1xAdgUil4XOgWdCCy41HLDZVkujKI7YMdE7AHCtihm7WU2hnjrsx2T5hjYkyzEgUbJoW3QjJUOfvHQ2bivsumQ50QZ78lGtpm6cInrCDlvbEZ7u55y93i1W1UP69Hz_WN0-pU4JNaa6KXWrZamwkFwpBKdrLUDl3HEoEUoNvERdgrS5VEo0nKtagmutklntGjlnF7vcTRg-JqTRrD25-JTtcZjICA1CAJf_g1wVUuY6gnwHujAQBWzNJvi1DV-Gg9kWaX4VGT3n-3BLznZtsL3z9GOUKtN5uc2-3nEYK_n0GAw5j73DxofYq2kG_8eVb5y9hKc</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Sowana, D.D.</creator><creator>Williams, D.R.G.</creator><creator>Dunlop, E.H.</creator><creator>Dally, B.B.</creator><creator>O’Neill, B.K.</creator><creator>Fletcher, D.F.</creator><general>Elsevier B.V</general><general>Institution of Chemical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20011101</creationdate><title>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</title><author>Sowana, D.D. ; Williams, D.R.G. ; Dunlop, E.H. ; Dally, B.B. ; O’Neill, B.K. ; Fletcher, D.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7d97f7394e83144e0c7b720461c109e097019e7903a63442d114b30cfa435bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>cell damage</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Energy dissipation</topic><topic>Eukaryotic cell cultures</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hydrodynamic stress</topic><topic>Impellers</topic><topic>local energy dissipation</topic><topic>Methods. Procedures. Technologies</topic><topic>Miscellaneous</topic><topic>plant cell culture</topic><topic>Plant cells and fungal cells</topic><topic>Shear stress</topic><topic>Turbulence</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowana, D.D.</creatorcontrib><creatorcontrib>Williams, D.R.G.</creatorcontrib><creatorcontrib>Dunlop, E.H.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>O’Neill, B.K.</creatorcontrib><creatorcontrib>Fletcher, D.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowana, D.D.</au><au>Williams, D.R.G.</au><au>Dunlop, E.H.</au><au>Dally, B.B.</au><au>O’Neill, B.K.</au><au>Fletcher, D.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent Shear Stress Effects on Plant Cell Suspension Cultures</atitle><jtitle>Chemical engineering research & design</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>79</volume><issue>8</issue><spage>867</spage><epage>875</epage><pages>867-875</pages><issn>0263-8762</issn><coden>CERDEE</coden><abstract>A study of the effects of hydrodynamic turbulent shear stress on the biological responses of carrot cell cultures (
Daucus carota) has been performed over a range of turbulent shear stresses. The experimental apparatus mimics turbulent conditions similar to the impeller region of a conventional stirred tank bioreactor. The apparatus was designed with the aid of simulations made using the computational fluid dynamics package CFX4. It consists of two concentric cylinders and a rotating cylindrical rod to provide turbulent mixing. The model was based on the two dimensional structure of a cylindrical wake in an annulus. The empirical shear stress agreed well with simulated values. Cell damage was found to correlate well with both the bulk energy dissipation and ‘local’ energy dissipation rate. The initial results suggest that significant cell damage occurs when the maximum energy dissipation is 50Wkg
–1 and the total energy dissipation is 10
4J kg
–1. These values are slightly higher than those reported earlier
1–2.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1205/02638760152721370</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2001-11, Vol.79 (8), p.867-875 |
issn | 0263-8762 |
language | eng |
recordid | cdi_proquest_miscellaneous_27022013 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Biological and medical sciences Bioreactors Biotechnology cell damage Computational fluid dynamics Computer simulation Energy dissipation Eukaryotic cell cultures Fundamental and applied biological sciences. Psychology hydrodynamic stress Impellers local energy dissipation Methods. Procedures. Technologies Miscellaneous plant cell culture Plant cells and fungal cells Shear stress Turbulence Wakes |
title | Turbulent Shear Stress Effects on Plant Cell Suspension Cultures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20Shear%20Stress%20Effects%20on%20Plant%20Cell%20Suspension%20Cultures&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Sowana,%20D.D.&rft.date=2001-11-01&rft.volume=79&rft.issue=8&rft.spage=867&rft.epage=875&rft.pages=867-875&rft.issn=0263-8762&rft.coden=CERDEE&rft_id=info:doi/10.1205/02638760152721370&rft_dat=%3Cproquest_cross%3E598899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21483367&rft_id=info:pmid/&rft_els_id=S0263876201721235&rfr_iscdi=true |