Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction

Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium–sulfur (Li–S) battery applications. Unfortunately, most curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-09, Vol.34 (39), p.e2204810-n/a
Hauptverfasser: Qi, Yaqin, Li, Nan, Zhang, Kun, Yang, Yong, Ren, Zengying, You, Jingyuan, Hou, Qian, Shen, Chao, Jin, Ting, Peng, Zuling, Xie, Keyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e2204810
container_title Advanced materials (Weinheim)
container_volume 34
creator Qi, Yaqin
Li, Nan
Zhang, Kun
Yang, Yong
Ren, Zengying
You, Jingyuan
Hou, Qian
Shen, Chao
Jin, Ting
Peng, Zuling
Xie, Keyu
description Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium–sulfur (Li–S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long‐term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium–tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long‐term integrity of the catalytic system. With the participation of EGaSn, a tailor‐made 2 Ah Li–S pouch cell with a specific energy density of 307.7 Wh kg−1 is realized. This work opens up new opportunities for liquid‐phase binary alloys as electrocatalysts for high‐specific‐energy Li–S batteries. Gallium–tin alloy, one of the promising liquid metals at room temperature, is applied to lithium–sulfur batteries as a novel liquid electrocatalyst with a dynamic feature, which can drastically reduce the activation energy barrier of the lithium polysulfides redox reaction, enhance the overall electrochemical kinetics, and achieve improvement of the specific energy density of lithium–sulfur batteries.
doi_str_mv 10.1002/adma.202204810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702193786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718461415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3500-c8033216ab97c38e9afb420cd94da17d15ad15d4b184730ee2a290a0085feb523</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMkdiYUk5fyXxWFq-pBYQgtlybEe4Suo2TgT573FVBBILw70b7veeTg-hcwwTDECulGnUhAAhwAoMB2iEOcEpA8EP0QgE5anIWHGMTkJYAYDIIBuhx_mwVo3TycJte2eSpe1UncxU1CF0Ial8m1x7HzprItK9u75Jnn289XXljA3JizX-M6rSnfPrU3RUqTrYs-89Rm-3N6-z-3TxdPcwmy5STTlAqguglOBMlSLXtLBCVSUjoI1gRuHcYK7iGFbiguUUrCWKCFAABa9syQkdo8t97qb1296GTjYuaFvXam19HyTJgWBB8yKL6MUfdOX7dh2_i1TMzzDDPFKTPaVbH0JrK7lpXaPaQWKQu3rlrl75U280iL3hw9V2-IeW0_ly-uv9AqEXfVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718461415</pqid></control><display><type>article</type><title>Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qi, Yaqin ; Li, Nan ; Zhang, Kun ; Yang, Yong ; Ren, Zengying ; You, Jingyuan ; Hou, Qian ; Shen, Chao ; Jin, Ting ; Peng, Zuling ; Xie, Keyu</creator><creatorcontrib>Qi, Yaqin ; Li, Nan ; Zhang, Kun ; Yang, Yong ; Ren, Zengying ; You, Jingyuan ; Hou, Qian ; Shen, Chao ; Jin, Ting ; Peng, Zuling ; Xie, Keyu</creatorcontrib><description>Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium–sulfur (Li–S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long‐term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium–tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long‐term integrity of the catalytic system. With the participation of EGaSn, a tailor‐made 2 Ah Li–S pouch cell with a specific energy density of 307.7 Wh kg−1 is realized. This work opens up new opportunities for liquid‐phase binary alloys as electrocatalysts for high‐specific‐energy Li–S batteries. Gallium–tin alloy, one of the promising liquid metals at room temperature, is applied to lithium–sulfur batteries as a novel liquid electrocatalyst with a dynamic feature, which can drastically reduce the activation energy barrier of the lithium polysulfides redox reaction, enhance the overall electrochemical kinetics, and achieve improvement of the specific energy density of lithium–sulfur batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202204810</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Binary alloys ; Chemisorption ; dynamic environment ; Electrocatalysts ; Gallium ; Liquid metals ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Polysulfides ; Redox reactions ; Specific energy ; Tin</subject><ispartof>Advanced materials (Weinheim), 2022-09, Vol.34 (39), p.e2204810-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3500-c8033216ab97c38e9afb420cd94da17d15ad15d4b184730ee2a290a0085feb523</citedby><cites>FETCH-LOGICAL-c3500-c8033216ab97c38e9afb420cd94da17d15ad15d4b184730ee2a290a0085feb523</cites><orcidid>0000-0001-7719-9095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202204810$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202204810$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qi, Yaqin</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Ren, Zengying</creatorcontrib><creatorcontrib>You, Jingyuan</creatorcontrib><creatorcontrib>Hou, Qian</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Jin, Ting</creatorcontrib><creatorcontrib>Peng, Zuling</creatorcontrib><creatorcontrib>Xie, Keyu</creatorcontrib><title>Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction</title><title>Advanced materials (Weinheim)</title><description>Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium–sulfur (Li–S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long‐term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium–tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long‐term integrity of the catalytic system. With the participation of EGaSn, a tailor‐made 2 Ah Li–S pouch cell with a specific energy density of 307.7 Wh kg−1 is realized. This work opens up new opportunities for liquid‐phase binary alloys as electrocatalysts for high‐specific‐energy Li–S batteries. Gallium–tin alloy, one of the promising liquid metals at room temperature, is applied to lithium–sulfur batteries as a novel liquid electrocatalyst with a dynamic feature, which can drastically reduce the activation energy barrier of the lithium polysulfides redox reaction, enhance the overall electrochemical kinetics, and achieve improvement of the specific energy density of lithium–sulfur batteries.</description><subject>Binary alloys</subject><subject>Chemisorption</subject><subject>dynamic environment</subject><subject>Electrocatalysts</subject><subject>Gallium</subject><subject>Liquid metals</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>Redox reactions</subject><subject>Specific energy</subject><subject>Tin</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMkdiYUk5fyXxWFq-pBYQgtlybEe4Suo2TgT573FVBBILw70b7veeTg-hcwwTDECulGnUhAAhwAoMB2iEOcEpA8EP0QgE5anIWHGMTkJYAYDIIBuhx_mwVo3TycJte2eSpe1UncxU1CF0Ial8m1x7HzprItK9u75Jnn289XXljA3JizX-M6rSnfPrU3RUqTrYs-89Rm-3N6-z-3TxdPcwmy5STTlAqguglOBMlSLXtLBCVSUjoI1gRuHcYK7iGFbiguUUrCWKCFAABa9syQkdo8t97qb1296GTjYuaFvXam19HyTJgWBB8yKL6MUfdOX7dh2_i1TMzzDDPFKTPaVbH0JrK7lpXaPaQWKQu3rlrl75U280iL3hw9V2-IeW0_ly-uv9AqEXfVo</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Qi, Yaqin</creator><creator>Li, Nan</creator><creator>Zhang, Kun</creator><creator>Yang, Yong</creator><creator>Ren, Zengying</creator><creator>You, Jingyuan</creator><creator>Hou, Qian</creator><creator>Shen, Chao</creator><creator>Jin, Ting</creator><creator>Peng, Zuling</creator><creator>Xie, Keyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7719-9095</orcidid></search><sort><creationdate>20220901</creationdate><title>Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction</title><author>Qi, Yaqin ; Li, Nan ; Zhang, Kun ; Yang, Yong ; Ren, Zengying ; You, Jingyuan ; Hou, Qian ; Shen, Chao ; Jin, Ting ; Peng, Zuling ; Xie, Keyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3500-c8033216ab97c38e9afb420cd94da17d15ad15d4b184730ee2a290a0085feb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary alloys</topic><topic>Chemisorption</topic><topic>dynamic environment</topic><topic>Electrocatalysts</topic><topic>Gallium</topic><topic>Liquid metals</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>Redox reactions</topic><topic>Specific energy</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yaqin</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Ren, Zengying</creatorcontrib><creatorcontrib>You, Jingyuan</creatorcontrib><creatorcontrib>Hou, Qian</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Jin, Ting</creatorcontrib><creatorcontrib>Peng, Zuling</creatorcontrib><creatorcontrib>Xie, Keyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yaqin</au><au>Li, Nan</au><au>Zhang, Kun</au><au>Yang, Yong</au><au>Ren, Zengying</au><au>You, Jingyuan</au><au>Hou, Qian</au><au>Shen, Chao</au><au>Jin, Ting</au><au>Peng, Zuling</au><au>Xie, Keyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>34</volume><issue>39</issue><spage>e2204810</spage><epage>n/a</epage><pages>e2204810-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium–sulfur (Li–S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long‐term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium–tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long‐term integrity of the catalytic system. With the participation of EGaSn, a tailor‐made 2 Ah Li–S pouch cell with a specific energy density of 307.7 Wh kg−1 is realized. This work opens up new opportunities for liquid‐phase binary alloys as electrocatalysts for high‐specific‐energy Li–S batteries. Gallium–tin alloy, one of the promising liquid metals at room temperature, is applied to lithium–sulfur batteries as a novel liquid electrocatalyst with a dynamic feature, which can drastically reduce the activation energy barrier of the lithium polysulfides redox reaction, enhance the overall electrochemical kinetics, and achieve improvement of the specific energy density of lithium–sulfur batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202204810</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7719-9095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-09, Vol.34 (39), p.e2204810-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2702193786
source Wiley Online Library Journals Frontfile Complete
subjects Binary alloys
Chemisorption
dynamic environment
Electrocatalysts
Gallium
Liquid metals
Lithium sulfur batteries
Li–S batteries
Materials science
Polysulfides
Redox reactions
Specific energy
Tin
title Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Liquid%20Metal%20Catalysts%20for%20Boosted%20Lithium%20Polysulfides%20Redox%20Reaction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Qi,%20Yaqin&rft.date=2022-09-01&rft.volume=34&rft.issue=39&rft.spage=e2204810&rft.epage=n/a&rft.pages=e2204810-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202204810&rft_dat=%3Cproquest_cross%3E2718461415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718461415&rft_id=info:pmid/&rfr_iscdi=true