T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma

Objective To investigate the value of histogram analysis of T1 mapping and diffusion-weighted imaging (DWI) in predicting the grade, subtype, and proliferative activity of meningioma. Methods This prospective study comprised 69 meningioma patients who underwent preoperative MRI including T1 mapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2023-01, Vol.33 (1), p.258-269
Hauptverfasser: Cao, Tiexin, Jiang, Rifeng, Zheng, Lingmin, Zhang, Rufei, Chen, Xiaodan, Wang, Zongmeng, Jiang, Peirong, Chen, Yilin, Zhong, Tianjin, Chen, Hu, Wu, PuYeh, Xue, Yunjing, Lin, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1
container_start_page 258
container_title European radiology
container_volume 33
creator Cao, Tiexin
Jiang, Rifeng
Zheng, Lingmin
Zhang, Rufei
Chen, Xiaodan
Wang, Zongmeng
Jiang, Peirong
Chen, Yilin
Zhong, Tianjin
Chen, Hu
Wu, PuYeh
Xue, Yunjing
Lin, Lin
description Objective To investigate the value of histogram analysis of T1 mapping and diffusion-weighted imaging (DWI) in predicting the grade, subtype, and proliferative activity of meningioma. Methods This prospective study comprised 69 meningioma patients who underwent preoperative MRI including T1 mapping and DWI. The histogram metrics, including mean, median, maximum, minimum, 10th percentiles (C10), 90th percentiles (C90), kurtosis, skewness, and variance, of T1 and apparent diffusion coefficient (ADC) values were extracted from the whole tumour and peritumoural oedema using FeAture Explorer. The Mann-Whitney U test was used for comparison between low- and high-grade tumours. Receiver operating characteristic (ROC) curve and logistic regression analyses were performed to identify the differential diagnostic performance. The Kruskal-Wallis test was used to further classify meningioma subtypes. Spearman’s rank correlation coefficients were calculated to analyse the correlations between histogram parameters and Ki-67 expression. Results High-grade meningiomas showed significantly higher mean, maximum, C90, and variance of T1 ( p = 0.001–0.009), lower minimum, and C10 of ADC ( p = 0.013–0.028), compared to low-grade meningiomas. For all histogram parameters, the highest individual distinctive power was T1 C90 with an AUC of 0.805. The best diagnostic accuracy was obtained by combining the T1 C90 and ADC C10 with an AUC of 0.864. The histogram parameters differentiated 4/6 pairs of subtype pairs. Significant correlations were identified between Ki-67 and histogram parameters of T1 (C90, mean) and ADC (C10, kurtosis, variance). Conclusion T1 and ADC histogram parameters may represent an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. Key Points • The histogram parameter based on T1 mapping and DWI is useful to preoperatively evaluate the grade, subtype, and proliferative activity of meningioma. • The combination of T1 C90 and ADC C10 showed the best performance for differentiating low- and high-grade meningiomas.
doi_str_mv 10.1007/s00330-022-09026-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702192734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702192734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8f39c56b556f20fe4efb23ef1555579f0287fa7e8ea087c59f45e602a3cd491c3</originalsourceid><addsrcrecordid>eNp9kcuO1DAQRSMEYoaBH2CBLLFhQaD8ipPlqIeXNBKbYW05SbnHQycOttNSfwG_TTU9PMQCL-ySfO6tUt2qes7hDQcwbzOAlFCDEDV0IJpaP6jOuZKi5tCqh3_VZ9WTnO8AoOPKPK7OpO60NFKdV99vOHPzyC6vNuw25BK3yU1scXRjwZTZ5A6sR2JYmNk-7CPrQ5xc-oqJ-ZjYknAMQwnzlpVbZCQf8TXLa18OCxVH7yXFXfCYXAl7ciJ4H8qBRc8mnEl49HtaPfJul_HZ_XtRfXn_7mbzsb7-_OHT5vK6HqTRpW697Abd9Fo3XoBHhb4XEj3XdEznQbTGO4MtOmjNoDuvNDYgnBxG1fFBXlSvTr401LcVc7FTyAPudm7GuGYrDAjeCdoNoS__Qe_immaajiitGtW1qiFKnKghxZwTerukQPs5WA72GJM9xWQpJvszJqtJ9OLeeu0nHH9LfuVCgDwBmb7mLaY_vf9j-wMB2p3G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754649846</pqid></control><display><type>article</type><title>T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Cao, Tiexin ; Jiang, Rifeng ; Zheng, Lingmin ; Zhang, Rufei ; Chen, Xiaodan ; Wang, Zongmeng ; Jiang, Peirong ; Chen, Yilin ; Zhong, Tianjin ; Chen, Hu ; Wu, PuYeh ; Xue, Yunjing ; Lin, Lin</creator><creatorcontrib>Cao, Tiexin ; Jiang, Rifeng ; Zheng, Lingmin ; Zhang, Rufei ; Chen, Xiaodan ; Wang, Zongmeng ; Jiang, Peirong ; Chen, Yilin ; Zhong, Tianjin ; Chen, Hu ; Wu, PuYeh ; Xue, Yunjing ; Lin, Lin</creatorcontrib><description>Objective To investigate the value of histogram analysis of T1 mapping and diffusion-weighted imaging (DWI) in predicting the grade, subtype, and proliferative activity of meningioma. Methods This prospective study comprised 69 meningioma patients who underwent preoperative MRI including T1 mapping and DWI. The histogram metrics, including mean, median, maximum, minimum, 10th percentiles (C10), 90th percentiles (C90), kurtosis, skewness, and variance, of T1 and apparent diffusion coefficient (ADC) values were extracted from the whole tumour and peritumoural oedema using FeAture Explorer. The Mann-Whitney U test was used for comparison between low- and high-grade tumours. Receiver operating characteristic (ROC) curve and logistic regression analyses were performed to identify the differential diagnostic performance. The Kruskal-Wallis test was used to further classify meningioma subtypes. Spearman’s rank correlation coefficients were calculated to analyse the correlations between histogram parameters and Ki-67 expression. Results High-grade meningiomas showed significantly higher mean, maximum, C90, and variance of T1 ( p = 0.001–0.009), lower minimum, and C10 of ADC ( p = 0.013–0.028), compared to low-grade meningiomas. For all histogram parameters, the highest individual distinctive power was T1 C90 with an AUC of 0.805. The best diagnostic accuracy was obtained by combining the T1 C90 and ADC C10 with an AUC of 0.864. The histogram parameters differentiated 4/6 pairs of subtype pairs. Significant correlations were identified between Ki-67 and histogram parameters of T1 (C90, mean) and ADC (C10, kurtosis, variance). Conclusion T1 and ADC histogram parameters may represent an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. Key Points • The histogram parameter based on T1 mapping and DWI is useful to preoperatively evaluate the grade, subtype, and proliferative activity of meningioma. • The combination of T1 C90 and ADC C10 showed the best performance for differentiating low- and high-grade meningiomas.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-022-09026-5</identifier><identifier>PMID: 35953734</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomarkers ; Brain cancer ; Correlation coefficient ; Correlation coefficients ; Diagnostic Radiology ; Diagnostic systems ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging - methods ; Edema ; Feature extraction ; Histograms ; Humans ; Imaging ; In vivo methods and tests ; Internal Medicine ; Interventional Radiology ; Ki-67 Antigen - metabolism ; Kurtosis ; Mapping ; Mathematical analysis ; Mean ; Medicine ; Medicine &amp; Public Health ; Meningeal Neoplasms - diagnostic imaging ; Meningeal Neoplasms - pathology ; Meningioma ; Meningioma - diagnostic imaging ; Meningioma - pathology ; Neuroradiology ; Oncology ; Parameter identification ; Prospective Studies ; Quality ; Radiology ; Regression analysis ; Retrospective Studies ; ROC Curve ; Tumors ; Ultrasound</subject><ispartof>European radiology, 2023-01, Vol.33 (1), p.258-269</ispartof><rights>The Author(s), under exclusive licence to European Society of Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to European Society of Radiology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8f39c56b556f20fe4efb23ef1555579f0287fa7e8ea087c59f45e602a3cd491c3</citedby><cites>FETCH-LOGICAL-c375t-8f39c56b556f20fe4efb23ef1555579f0287fa7e8ea087c59f45e602a3cd491c3</cites><orcidid>0000-0003-2782-1848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-022-09026-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-022-09026-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35953734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Tiexin</creatorcontrib><creatorcontrib>Jiang, Rifeng</creatorcontrib><creatorcontrib>Zheng, Lingmin</creatorcontrib><creatorcontrib>Zhang, Rufei</creatorcontrib><creatorcontrib>Chen, Xiaodan</creatorcontrib><creatorcontrib>Wang, Zongmeng</creatorcontrib><creatorcontrib>Jiang, Peirong</creatorcontrib><creatorcontrib>Chen, Yilin</creatorcontrib><creatorcontrib>Zhong, Tianjin</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wu, PuYeh</creatorcontrib><creatorcontrib>Xue, Yunjing</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><title>T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objective To investigate the value of histogram analysis of T1 mapping and diffusion-weighted imaging (DWI) in predicting the grade, subtype, and proliferative activity of meningioma. Methods This prospective study comprised 69 meningioma patients who underwent preoperative MRI including T1 mapping and DWI. The histogram metrics, including mean, median, maximum, minimum, 10th percentiles (C10), 90th percentiles (C90), kurtosis, skewness, and variance, of T1 and apparent diffusion coefficient (ADC) values were extracted from the whole tumour and peritumoural oedema using FeAture Explorer. The Mann-Whitney U test was used for comparison between low- and high-grade tumours. Receiver operating characteristic (ROC) curve and logistic regression analyses were performed to identify the differential diagnostic performance. The Kruskal-Wallis test was used to further classify meningioma subtypes. Spearman’s rank correlation coefficients were calculated to analyse the correlations between histogram parameters and Ki-67 expression. Results High-grade meningiomas showed significantly higher mean, maximum, C90, and variance of T1 ( p = 0.001–0.009), lower minimum, and C10 of ADC ( p = 0.013–0.028), compared to low-grade meningiomas. For all histogram parameters, the highest individual distinctive power was T1 C90 with an AUC of 0.805. The best diagnostic accuracy was obtained by combining the T1 C90 and ADC C10 with an AUC of 0.864. The histogram parameters differentiated 4/6 pairs of subtype pairs. Significant correlations were identified between Ki-67 and histogram parameters of T1 (C90, mean) and ADC (C10, kurtosis, variance). Conclusion T1 and ADC histogram parameters may represent an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. Key Points • The histogram parameter based on T1 mapping and DWI is useful to preoperatively evaluate the grade, subtype, and proliferative activity of meningioma. • The combination of T1 C90 and ADC C10 showed the best performance for differentiating low- and high-grade meningiomas.</description><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Edema</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Humans</subject><subject>Imaging</subject><subject>In vivo methods and tests</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Kurtosis</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mean</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Meningeal Neoplasms - diagnostic imaging</subject><subject>Meningeal Neoplasms - pathology</subject><subject>Meningioma</subject><subject>Meningioma - diagnostic imaging</subject><subject>Meningioma - pathology</subject><subject>Neuroradiology</subject><subject>Oncology</subject><subject>Parameter identification</subject><subject>Prospective Studies</subject><subject>Quality</subject><subject>Radiology</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Tumors</subject><subject>Ultrasound</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcuO1DAQRSMEYoaBH2CBLLFhQaD8ipPlqIeXNBKbYW05SbnHQycOttNSfwG_TTU9PMQCL-ySfO6tUt2qes7hDQcwbzOAlFCDEDV0IJpaP6jOuZKi5tCqh3_VZ9WTnO8AoOPKPK7OpO60NFKdV99vOHPzyC6vNuw25BK3yU1scXRjwZTZ5A6sR2JYmNk-7CPrQ5xc-oqJ-ZjYknAMQwnzlpVbZCQf8TXLa18OCxVH7yXFXfCYXAl7ciJ4H8qBRc8mnEl49HtaPfJul_HZ_XtRfXn_7mbzsb7-_OHT5vK6HqTRpW697Abd9Fo3XoBHhb4XEj3XdEznQbTGO4MtOmjNoDuvNDYgnBxG1fFBXlSvTr401LcVc7FTyAPudm7GuGYrDAjeCdoNoS__Qe_immaajiitGtW1qiFKnKghxZwTerukQPs5WA72GJM9xWQpJvszJqtJ9OLeeu0nHH9LfuVCgDwBmb7mLaY_vf9j-wMB2p3G</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Cao, Tiexin</creator><creator>Jiang, Rifeng</creator><creator>Zheng, Lingmin</creator><creator>Zhang, Rufei</creator><creator>Chen, Xiaodan</creator><creator>Wang, Zongmeng</creator><creator>Jiang, Peirong</creator><creator>Chen, Yilin</creator><creator>Zhong, Tianjin</creator><creator>Chen, Hu</creator><creator>Wu, PuYeh</creator><creator>Xue, Yunjing</creator><creator>Lin, Lin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2782-1848</orcidid></search><sort><creationdate>20230101</creationdate><title>T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma</title><author>Cao, Tiexin ; Jiang, Rifeng ; Zheng, Lingmin ; Zhang, Rufei ; Chen, Xiaodan ; Wang, Zongmeng ; Jiang, Peirong ; Chen, Yilin ; Zhong, Tianjin ; Chen, Hu ; Wu, PuYeh ; Xue, Yunjing ; Lin, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8f39c56b556f20fe4efb23ef1555579f0287fa7e8ea087c59f45e602a3cd491c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Edema</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Humans</topic><topic>Imaging</topic><topic>In vivo methods and tests</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Kurtosis</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mean</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Meningeal Neoplasms - diagnostic imaging</topic><topic>Meningeal Neoplasms - pathology</topic><topic>Meningioma</topic><topic>Meningioma - diagnostic imaging</topic><topic>Meningioma - pathology</topic><topic>Neuroradiology</topic><topic>Oncology</topic><topic>Parameter identification</topic><topic>Prospective Studies</topic><topic>Quality</topic><topic>Radiology</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Tumors</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Tiexin</creatorcontrib><creatorcontrib>Jiang, Rifeng</creatorcontrib><creatorcontrib>Zheng, Lingmin</creatorcontrib><creatorcontrib>Zhang, Rufei</creatorcontrib><creatorcontrib>Chen, Xiaodan</creatorcontrib><creatorcontrib>Wang, Zongmeng</creatorcontrib><creatorcontrib>Jiang, Peirong</creatorcontrib><creatorcontrib>Chen, Yilin</creatorcontrib><creatorcontrib>Zhong, Tianjin</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wu, PuYeh</creatorcontrib><creatorcontrib>Xue, Yunjing</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Tiexin</au><au>Jiang, Rifeng</au><au>Zheng, Lingmin</au><au>Zhang, Rufei</au><au>Chen, Xiaodan</au><au>Wang, Zongmeng</au><au>Jiang, Peirong</au><au>Chen, Yilin</au><au>Zhong, Tianjin</au><au>Chen, Hu</au><au>Wu, PuYeh</au><au>Xue, Yunjing</au><au>Lin, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>258</spage><epage>269</epage><pages>258-269</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objective To investigate the value of histogram analysis of T1 mapping and diffusion-weighted imaging (DWI) in predicting the grade, subtype, and proliferative activity of meningioma. Methods This prospective study comprised 69 meningioma patients who underwent preoperative MRI including T1 mapping and DWI. The histogram metrics, including mean, median, maximum, minimum, 10th percentiles (C10), 90th percentiles (C90), kurtosis, skewness, and variance, of T1 and apparent diffusion coefficient (ADC) values were extracted from the whole tumour and peritumoural oedema using FeAture Explorer. The Mann-Whitney U test was used for comparison between low- and high-grade tumours. Receiver operating characteristic (ROC) curve and logistic regression analyses were performed to identify the differential diagnostic performance. The Kruskal-Wallis test was used to further classify meningioma subtypes. Spearman’s rank correlation coefficients were calculated to analyse the correlations between histogram parameters and Ki-67 expression. Results High-grade meningiomas showed significantly higher mean, maximum, C90, and variance of T1 ( p = 0.001–0.009), lower minimum, and C10 of ADC ( p = 0.013–0.028), compared to low-grade meningiomas. For all histogram parameters, the highest individual distinctive power was T1 C90 with an AUC of 0.805. The best diagnostic accuracy was obtained by combining the T1 C90 and ADC C10 with an AUC of 0.864. The histogram parameters differentiated 4/6 pairs of subtype pairs. Significant correlations were identified between Ki-67 and histogram parameters of T1 (C90, mean) and ADC (C10, kurtosis, variance). Conclusion T1 and ADC histogram parameters may represent an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. Key Points • The histogram parameter based on T1 mapping and DWI is useful to preoperatively evaluate the grade, subtype, and proliferative activity of meningioma. • The combination of T1 C90 and ADC C10 showed the best performance for differentiating low- and high-grade meningiomas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35953734</pmid><doi>10.1007/s00330-022-09026-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2782-1848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-1084
ispartof European radiology, 2023-01, Vol.33 (1), p.258-269
issn 1432-1084
0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2702192734
source MEDLINE; SpringerLink Journals
subjects Biomarkers
Brain cancer
Correlation coefficient
Correlation coefficients
Diagnostic Radiology
Diagnostic systems
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Edema
Feature extraction
Histograms
Humans
Imaging
In vivo methods and tests
Internal Medicine
Interventional Radiology
Ki-67 Antigen - metabolism
Kurtosis
Mapping
Mathematical analysis
Mean
Medicine
Medicine & Public Health
Meningeal Neoplasms - diagnostic imaging
Meningeal Neoplasms - pathology
Meningioma
Meningioma - diagnostic imaging
Meningioma - pathology
Neuroradiology
Oncology
Parameter identification
Prospective Studies
Quality
Radiology
Regression analysis
Retrospective Studies
ROC Curve
Tumors
Ultrasound
title T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T1%20and%20ADC%20histogram%20parameters%20may%20be%20an%20in%20vivo%20biomarker%20for%20predicting%20the%20grade,%20subtype,%20and%20proliferative%20activity%20of%20meningioma&rft.jtitle=European%20radiology&rft.au=Cao,%20Tiexin&rft.date=2023-01-01&rft.volume=33&rft.issue=1&rft.spage=258&rft.epage=269&rft.pages=258-269&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-022-09026-5&rft_dat=%3Cproquest_cross%3E2702192734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754649846&rft_id=info:pmid/35953734&rfr_iscdi=true