Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol
Recent high-pressure NMR results indicate that the preactive conformation of the β 1 -adrenergic receptor (β 1 AR) harbours completely empty cavities of ~100 Å 3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of x...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2022-10, Vol.14 (10), p.1133-1141 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1141 |
---|---|
container_issue | 10 |
container_start_page | 1133 |
container_title | Nature chemistry |
container_volume | 14 |
creator | Abiko, Layara Akemi Dias Teixeira, Raphael Engilberge, Sylvain Grahl, Anne Mühlethaler, Tobias Sharpe, Timothy Grzesiek, Stephan |
description | Recent high-pressure NMR results indicate that the preactive conformation of the β
1
-adrenergic receptor (β
1
AR) harbours completely empty cavities of ~100 Å
3
volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β
1
AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β
1
AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β
1
AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β
1
AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
The β
1
-adrenergic receptor (β
1
AR) contains empty cavities in its preactive conformation, which disappear in the active one. Now, using X-ray crystallography of xenon-derivatized β
1
AR crystals, a cavity has been shown to be in contact with the cholesterol-binding pocket. Monitoring the binding of a cholesterol analogue in solution has explained the function of cholesterol as a negative allosteric modulator of β
1
AR. |
doi_str_mv | 10.1038/s41557-022-01009-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702192260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718493985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-7d0e101b20d0d58bd5783bf8a1e57ca4f41a98bc6ddaf8392bc06e6fc71e57943</originalsourceid><addsrcrecordid>eNp9kcFKxDAQhosoqKsv4CngxUt0kjRtc5TFVWHBi55Dmk7XSrZZk666r-WD-Eymrih48DQD830zA3-WnTA4ZyCqi5gzKUsKnFNgAIqqneyAlVLSXORq96cXsJ8dxvgEUEjBioNsOeuc6_oF8S0x5NUMGGgbEMmL7xqCbytnuj6S4RGJcc7HNO8sCbhYOzN0vh-9cfjxzqhpAvYYFl-AxdXgA6k3xD56h6Po3VG21xoX8fi7TrKH2dX99IbO765vp5dzaoUqBlo2gAxYzaGBRlZ1I8tK1G1lGMrSmrzNmVFVbYumMW0lFK8tFFi0thwBlYtJdrbduwr-eZ2O62UXLTpnevTrqHkJnCnOC0jo6R_0ya9Dn75LFKtyJVQlE8W3lA0-xoCtXoVuacJGM9BjAnqbgE4J6K8EtEqS2Eoxwf0Cw-_qf6xP20eKzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718493985</pqid></control><display><type>article</type><title>Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Abiko, Layara Akemi ; Dias Teixeira, Raphael ; Engilberge, Sylvain ; Grahl, Anne ; Mühlethaler, Tobias ; Sharpe, Timothy ; Grzesiek, Stephan</creator><creatorcontrib>Abiko, Layara Akemi ; Dias Teixeira, Raphael ; Engilberge, Sylvain ; Grahl, Anne ; Mühlethaler, Tobias ; Sharpe, Timothy ; Grzesiek, Stephan</creatorcontrib><description>Recent high-pressure NMR results indicate that the preactive conformation of the β
1
-adrenergic receptor (β
1
AR) harbours completely empty cavities of ~100 Å
3
volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β
1
AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β
1
AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β
1
AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β
1
AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
The β
1
-adrenergic receptor (β
1
AR) contains empty cavities in its preactive conformation, which disappear in the active one. Now, using X-ray crystallography of xenon-derivatized β
1
AR crystals, a cavity has been shown to be in contact with the cholesterol-binding pocket. Monitoring the binding of a cholesterol analogue in solution has explained the function of cholesterol as a negative allosteric modulator of β
1
AR.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-022-01009-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/612/194 ; 631/535/1266/1265 ; 631/535/878/1263 ; 639/638/92/287/1197 ; 639/638/92/609 ; Adrenergic receptors ; Allosteric properties ; Analytical Chemistry ; Binding ; Biochemistry ; Calorimetry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cholesterol ; Crystallography ; Crystals ; Drug development ; Harbors ; Holes ; Inorganic Chemistry ; Nanobodies ; NMR ; Nuclear magnetic resonance ; Organic Chemistry ; Physical Chemistry ; Proteins ; Receptors (physiology) ; Titration ; Titration calorimetry ; X-ray crystallography ; Xenon</subject><ispartof>Nature chemistry, 2022-10, Vol.14 (10), p.1133-1141</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-7d0e101b20d0d58bd5783bf8a1e57ca4f41a98bc6ddaf8392bc06e6fc71e57943</citedby><cites>FETCH-LOGICAL-c396t-7d0e101b20d0d58bd5783bf8a1e57ca4f41a98bc6ddaf8392bc06e6fc71e57943</cites><orcidid>0000-0001-9642-7508 ; 0000-0003-1114-159X ; 0000-0003-3537-534X ; 0000-0001-8680-6790 ; 0000-0002-4980-1330 ; 0000-0003-1998-4225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abiko, Layara Akemi</creatorcontrib><creatorcontrib>Dias Teixeira, Raphael</creatorcontrib><creatorcontrib>Engilberge, Sylvain</creatorcontrib><creatorcontrib>Grahl, Anne</creatorcontrib><creatorcontrib>Mühlethaler, Tobias</creatorcontrib><creatorcontrib>Sharpe, Timothy</creatorcontrib><creatorcontrib>Grzesiek, Stephan</creatorcontrib><title>Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Recent high-pressure NMR results indicate that the preactive conformation of the β
1
-adrenergic receptor (β
1
AR) harbours completely empty cavities of ~100 Å
3
volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β
1
AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β
1
AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β
1
AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β
1
AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
The β
1
-adrenergic receptor (β
1
AR) contains empty cavities in its preactive conformation, which disappear in the active one. Now, using X-ray crystallography of xenon-derivatized β
1
AR crystals, a cavity has been shown to be in contact with the cholesterol-binding pocket. Monitoring the binding of a cholesterol analogue in solution has explained the function of cholesterol as a negative allosteric modulator of β
1
AR.</description><subject>631/45/612/194</subject><subject>631/535/1266/1265</subject><subject>631/535/878/1263</subject><subject>639/638/92/287/1197</subject><subject>639/638/92/609</subject><subject>Adrenergic receptors</subject><subject>Allosteric properties</subject><subject>Analytical Chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Calorimetry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cholesterol</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Drug development</subject><subject>Harbors</subject><subject>Holes</subject><subject>Inorganic Chemistry</subject><subject>Nanobodies</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Proteins</subject><subject>Receptors (physiology)</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>X-ray crystallography</subject><subject>Xenon</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFKxDAQhosoqKsv4CngxUt0kjRtc5TFVWHBi55Dmk7XSrZZk666r-WD-Eymrih48DQD830zA3-WnTA4ZyCqi5gzKUsKnFNgAIqqneyAlVLSXORq96cXsJ8dxvgEUEjBioNsOeuc6_oF8S0x5NUMGGgbEMmL7xqCbytnuj6S4RGJcc7HNO8sCbhYOzN0vh-9cfjxzqhpAvYYFl-AxdXgA6k3xD56h6Po3VG21xoX8fi7TrKH2dX99IbO765vp5dzaoUqBlo2gAxYzaGBRlZ1I8tK1G1lGMrSmrzNmVFVbYumMW0lFK8tFFi0thwBlYtJdrbduwr-eZ2O62UXLTpnevTrqHkJnCnOC0jo6R_0ya9Dn75LFKtyJVQlE8W3lA0-xoCtXoVuacJGM9BjAnqbgE4J6K8EtEqS2Eoxwf0Cw-_qf6xP20eKzA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Abiko, Layara Akemi</creator><creator>Dias Teixeira, Raphael</creator><creator>Engilberge, Sylvain</creator><creator>Grahl, Anne</creator><creator>Mühlethaler, Tobias</creator><creator>Sharpe, Timothy</creator><creator>Grzesiek, Stephan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9642-7508</orcidid><orcidid>https://orcid.org/0000-0003-1114-159X</orcidid><orcidid>https://orcid.org/0000-0003-3537-534X</orcidid><orcidid>https://orcid.org/0000-0001-8680-6790</orcidid><orcidid>https://orcid.org/0000-0002-4980-1330</orcidid><orcidid>https://orcid.org/0000-0003-1998-4225</orcidid></search><sort><creationdate>20221001</creationdate><title>Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol</title><author>Abiko, Layara Akemi ; Dias Teixeira, Raphael ; Engilberge, Sylvain ; Grahl, Anne ; Mühlethaler, Tobias ; Sharpe, Timothy ; Grzesiek, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-7d0e101b20d0d58bd5783bf8a1e57ca4f41a98bc6ddaf8392bc06e6fc71e57943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/45/612/194</topic><topic>631/535/1266/1265</topic><topic>631/535/878/1263</topic><topic>639/638/92/287/1197</topic><topic>639/638/92/609</topic><topic>Adrenergic receptors</topic><topic>Allosteric properties</topic><topic>Analytical Chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Calorimetry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cholesterol</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Drug development</topic><topic>Harbors</topic><topic>Holes</topic><topic>Inorganic Chemistry</topic><topic>Nanobodies</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Proteins</topic><topic>Receptors (physiology)</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>X-ray crystallography</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abiko, Layara Akemi</creatorcontrib><creatorcontrib>Dias Teixeira, Raphael</creatorcontrib><creatorcontrib>Engilberge, Sylvain</creatorcontrib><creatorcontrib>Grahl, Anne</creatorcontrib><creatorcontrib>Mühlethaler, Tobias</creatorcontrib><creatorcontrib>Sharpe, Timothy</creatorcontrib><creatorcontrib>Grzesiek, Stephan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abiko, Layara Akemi</au><au>Dias Teixeira, Raphael</au><au>Engilberge, Sylvain</au><au>Grahl, Anne</au><au>Mühlethaler, Tobias</au><au>Sharpe, Timothy</au><au>Grzesiek, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><spage>1133</spage><epage>1141</epage><pages>1133-1141</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Recent high-pressure NMR results indicate that the preactive conformation of the β
1
-adrenergic receptor (β
1
AR) harbours completely empty cavities of ~100 Å
3
volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β
1
AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β
1
AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β
1
AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β
1
AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
The β
1
-adrenergic receptor (β
1
AR) contains empty cavities in its preactive conformation, which disappear in the active one. Now, using X-ray crystallography of xenon-derivatized β
1
AR crystals, a cavity has been shown to be in contact with the cholesterol-binding pocket. Monitoring the binding of a cholesterol analogue in solution has explained the function of cholesterol as a negative allosteric modulator of β
1
AR.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-022-01009-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9642-7508</orcidid><orcidid>https://orcid.org/0000-0003-1114-159X</orcidid><orcidid>https://orcid.org/0000-0003-3537-534X</orcidid><orcidid>https://orcid.org/0000-0001-8680-6790</orcidid><orcidid>https://orcid.org/0000-0002-4980-1330</orcidid><orcidid>https://orcid.org/0000-0003-1998-4225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2022-10, Vol.14 (10), p.1133-1141 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2702192260 |
source | Nature; Alma/SFX Local Collection |
subjects | 631/45/612/194 631/535/1266/1265 631/535/878/1263 639/638/92/287/1197 639/638/92/609 Adrenergic receptors Allosteric properties Analytical Chemistry Binding Biochemistry Calorimetry Chemistry Chemistry and Materials Science Chemistry/Food Science Cholesterol Crystallography Crystals Drug development Harbors Holes Inorganic Chemistry Nanobodies NMR Nuclear magnetic resonance Organic Chemistry Physical Chemistry Proteins Receptors (physiology) Titration Titration calorimetry X-ray crystallography Xenon |
title | Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filling%20of%20a%20water-free%20void%20explains%20the%20allosteric%20regulation%20of%20the%20%CE%B21-adrenergic%20receptor%20by%20cholesterol&rft.jtitle=Nature%20chemistry&rft.au=Abiko,%20Layara%20Akemi&rft.date=2022-10-01&rft.volume=14&rft.issue=10&rft.spage=1133&rft.epage=1141&rft.pages=1133-1141&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-022-01009-9&rft_dat=%3Cproquest_cross%3E2718493985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718493985&rft_id=info:pmid/&rfr_iscdi=true |