Dedicated farnesyl diphosphate synthases circumvent isoprenoid‐derived growth‐defense tradeoffs in Zea mays

SUMMARY Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2022-10, Vol.112 (1), p.207-220
Hauptverfasser: Tang, Hoang V., Berryman, David L., Mendoza, Jorrel, Yactayo‐Chang, Jessica P., Li, Qin‐Bao, Christensen, Shawn A., Hunter, Charles T., Best, Norman, Soubeyrand, Eric, Akhtar, Tariq A., Basset, Gilles J., Block, Anna K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 1
container_start_page 207
container_title The Plant journal : for cell and molecular biology
container_volume 112
creator Tang, Hoang V.
Berryman, David L.
Mendoza, Jorrel
Yactayo‐Chang, Jessica P.
Li, Qin‐Bao
Christensen, Shawn A.
Hunter, Charles T.
Best, Norman
Soubeyrand, Eric
Akhtar, Tariq A.
Basset, Gilles J.
Block, Anna K.
description SUMMARY Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate‐derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co‐factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense‐related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth. Significance Statement A major goal for agricultural research is to develop crops that have both good yield and pest resistance. Often improving one of these traits has negative impact on the other, the so‐called growth‐defense tradeoff. In this study we uncover a mechanism in maize that allows the production of high levels of defense compounds using dedicated enzymes for shared precursor production. These findings can be used to guide synthetic biology approaches for agricultural improvement.
doi_str_mv 10.1111/tpj.15941
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702182515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702182515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2601-db38acee133764995b34e4785c3331244f48355fc8122c6f8d3a50a23f4bba863</originalsourceid><addsrcrecordid>eNp10M1KHEEQB_BGEnBjcsgbNHjRw2h_zsdRNokahOSgILkMPT3VTi-z05OuGWVueQSf0SdJu5uTkLoUFL8qij8hnzk746nOp3FzxnWl-AFZcZnrTHJ5_46sWJWzrFBcHJIPiBvGeCFztSLhC7Temgla6kwcAJeetn7sAo5dmlJchqkzCEitj3bePsIwUY9hjDAE3778eW4h-se0_hDD09TtBg4GBDpF00JwDqkf6C8wdGsW_EjeO9MjfPrXj8jdt6-366vs5sfl9friJrMiZzxrG1kaC8ClLHJVVbqRClRRaiul5EIpp0qptbMlF8Lmrmyl0cwI6VTTmDKXR-Rkf3eM4fcMONVbjxb63gwQZqxFwQQvheY60eM3dBPmOKTvkhJMVFXBy6RO98rGgBjB1WP0WxOXmrP6Nfo6RV_vok_2fG-ffA_L_2F9-_P7fuMvapuIsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720299718</pqid></control><display><type>article</type><title>Dedicated farnesyl diphosphate synthases circumvent isoprenoid‐derived growth‐defense tradeoffs in Zea mays</title><source>Wiley-Blackwell Open Access Backfiles</source><source>Wiley Online Library</source><source>IngentaConnect Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Tang, Hoang V. ; Berryman, David L. ; Mendoza, Jorrel ; Yactayo‐Chang, Jessica P. ; Li, Qin‐Bao ; Christensen, Shawn A. ; Hunter, Charles T. ; Best, Norman ; Soubeyrand, Eric ; Akhtar, Tariq A. ; Basset, Gilles J. ; Block, Anna K.</creator><creatorcontrib>Tang, Hoang V. ; Berryman, David L. ; Mendoza, Jorrel ; Yactayo‐Chang, Jessica P. ; Li, Qin‐Bao ; Christensen, Shawn A. ; Hunter, Charles T. ; Best, Norman ; Soubeyrand, Eric ; Akhtar, Tariq A. ; Basset, Gilles J. ; Block, Anna K.</creatorcontrib><description>SUMMARY Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate‐derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co‐factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense‐related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth. Significance Statement A major goal for agricultural research is to develop crops that have both good yield and pest resistance. Often improving one of these traits has negative impact on the other, the so‐called growth‐defense tradeoff. In this study we uncover a mechanism in maize that allows the production of high levels of defense compounds using dedicated enzymes for shared precursor production. These findings can be used to guide synthetic biology approaches for agricultural improvement.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15941</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>CRISPR ; FPS gene ; fungal ; insect ; isoprenoid ; Metabolites ; pathogen ; Phenotypes ; phytoalexin ; Phytoalexins ; Plant growth ; tradeoff ; Ubiquinone ; Zea mays</subject><ispartof>The Plant journal : for cell and molecular biology, 2022-10, Vol.112 (1), p.207-220</ispartof><rights>2022 Society for Experimental Biology and John Wiley &amp; Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>Copyright © 2022 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2601-db38acee133764995b34e4785c3331244f48355fc8122c6f8d3a50a23f4bba863</citedby><cites>FETCH-LOGICAL-c2601-db38acee133764995b34e4785c3331244f48355fc8122c6f8d3a50a23f4bba863</cites><orcidid>0000-0003-2970-3183 ; 0000-0003-1689-4005 ; 0000-0001-6864-5452 ; 0000-0002-6799-7031 ; 0000-0002-2652-9485 ; 0000-0002-6492-681X ; 0000-0003-4579-8290 ; 0000-0002-3581-3517 ; 0000-0001-5275-9797 ; 0000-0003-4958-0379 ; 0000-0002-6572-5999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15941$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15941$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Tang, Hoang V.</creatorcontrib><creatorcontrib>Berryman, David L.</creatorcontrib><creatorcontrib>Mendoza, Jorrel</creatorcontrib><creatorcontrib>Yactayo‐Chang, Jessica P.</creatorcontrib><creatorcontrib>Li, Qin‐Bao</creatorcontrib><creatorcontrib>Christensen, Shawn A.</creatorcontrib><creatorcontrib>Hunter, Charles T.</creatorcontrib><creatorcontrib>Best, Norman</creatorcontrib><creatorcontrib>Soubeyrand, Eric</creatorcontrib><creatorcontrib>Akhtar, Tariq A.</creatorcontrib><creatorcontrib>Basset, Gilles J.</creatorcontrib><creatorcontrib>Block, Anna K.</creatorcontrib><title>Dedicated farnesyl diphosphate synthases circumvent isoprenoid‐derived growth‐defense tradeoffs in Zea mays</title><title>The Plant journal : for cell and molecular biology</title><description>SUMMARY Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate‐derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co‐factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense‐related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth. Significance Statement A major goal for agricultural research is to develop crops that have both good yield and pest resistance. Often improving one of these traits has negative impact on the other, the so‐called growth‐defense tradeoff. In this study we uncover a mechanism in maize that allows the production of high levels of defense compounds using dedicated enzymes for shared precursor production. These findings can be used to guide synthetic biology approaches for agricultural improvement.</description><subject>CRISPR</subject><subject>FPS gene</subject><subject>fungal</subject><subject>insect</subject><subject>isoprenoid</subject><subject>Metabolites</subject><subject>pathogen</subject><subject>Phenotypes</subject><subject>phytoalexin</subject><subject>Phytoalexins</subject><subject>Plant growth</subject><subject>tradeoff</subject><subject>Ubiquinone</subject><subject>Zea mays</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KHEEQB_BGEnBjcsgbNHjRw2h_zsdRNokahOSgILkMPT3VTi-z05OuGWVueQSf0SdJu5uTkLoUFL8qij8hnzk746nOp3FzxnWl-AFZcZnrTHJ5_46sWJWzrFBcHJIPiBvGeCFztSLhC7Temgla6kwcAJeetn7sAo5dmlJchqkzCEitj3bePsIwUY9hjDAE3778eW4h-se0_hDD09TtBg4GBDpF00JwDqkf6C8wdGsW_EjeO9MjfPrXj8jdt6-366vs5sfl9friJrMiZzxrG1kaC8ClLHJVVbqRClRRaiul5EIpp0qptbMlF8Lmrmyl0cwI6VTTmDKXR-Rkf3eM4fcMONVbjxb63gwQZqxFwQQvheY60eM3dBPmOKTvkhJMVFXBy6RO98rGgBjB1WP0WxOXmrP6Nfo6RV_vok_2fG-ffA_L_2F9-_P7fuMvapuIsQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Tang, Hoang V.</creator><creator>Berryman, David L.</creator><creator>Mendoza, Jorrel</creator><creator>Yactayo‐Chang, Jessica P.</creator><creator>Li, Qin‐Bao</creator><creator>Christensen, Shawn A.</creator><creator>Hunter, Charles T.</creator><creator>Best, Norman</creator><creator>Soubeyrand, Eric</creator><creator>Akhtar, Tariq A.</creator><creator>Basset, Gilles J.</creator><creator>Block, Anna K.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2970-3183</orcidid><orcidid>https://orcid.org/0000-0003-1689-4005</orcidid><orcidid>https://orcid.org/0000-0001-6864-5452</orcidid><orcidid>https://orcid.org/0000-0002-6799-7031</orcidid><orcidid>https://orcid.org/0000-0002-2652-9485</orcidid><orcidid>https://orcid.org/0000-0002-6492-681X</orcidid><orcidid>https://orcid.org/0000-0003-4579-8290</orcidid><orcidid>https://orcid.org/0000-0002-3581-3517</orcidid><orcidid>https://orcid.org/0000-0001-5275-9797</orcidid><orcidid>https://orcid.org/0000-0003-4958-0379</orcidid><orcidid>https://orcid.org/0000-0002-6572-5999</orcidid></search><sort><creationdate>202210</creationdate><title>Dedicated farnesyl diphosphate synthases circumvent isoprenoid‐derived growth‐defense tradeoffs in Zea mays</title><author>Tang, Hoang V. ; Berryman, David L. ; Mendoza, Jorrel ; Yactayo‐Chang, Jessica P. ; Li, Qin‐Bao ; Christensen, Shawn A. ; Hunter, Charles T. ; Best, Norman ; Soubeyrand, Eric ; Akhtar, Tariq A. ; Basset, Gilles J. ; Block, Anna K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2601-db38acee133764995b34e4785c3331244f48355fc8122c6f8d3a50a23f4bba863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CRISPR</topic><topic>FPS gene</topic><topic>fungal</topic><topic>insect</topic><topic>isoprenoid</topic><topic>Metabolites</topic><topic>pathogen</topic><topic>Phenotypes</topic><topic>phytoalexin</topic><topic>Phytoalexins</topic><topic>Plant growth</topic><topic>tradeoff</topic><topic>Ubiquinone</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hoang V.</creatorcontrib><creatorcontrib>Berryman, David L.</creatorcontrib><creatorcontrib>Mendoza, Jorrel</creatorcontrib><creatorcontrib>Yactayo‐Chang, Jessica P.</creatorcontrib><creatorcontrib>Li, Qin‐Bao</creatorcontrib><creatorcontrib>Christensen, Shawn A.</creatorcontrib><creatorcontrib>Hunter, Charles T.</creatorcontrib><creatorcontrib>Best, Norman</creatorcontrib><creatorcontrib>Soubeyrand, Eric</creatorcontrib><creatorcontrib>Akhtar, Tariq A.</creatorcontrib><creatorcontrib>Basset, Gilles J.</creatorcontrib><creatorcontrib>Block, Anna K.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hoang V.</au><au>Berryman, David L.</au><au>Mendoza, Jorrel</au><au>Yactayo‐Chang, Jessica P.</au><au>Li, Qin‐Bao</au><au>Christensen, Shawn A.</au><au>Hunter, Charles T.</au><au>Best, Norman</au><au>Soubeyrand, Eric</au><au>Akhtar, Tariq A.</au><au>Basset, Gilles J.</au><au>Block, Anna K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dedicated farnesyl diphosphate synthases circumvent isoprenoid‐derived growth‐defense tradeoffs in Zea mays</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><date>2022-10</date><risdate>2022</risdate><volume>112</volume><issue>1</issue><spage>207</spage><epage>220</epage><pages>207-220</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate‐derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co‐factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense‐related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth. Significance Statement A major goal for agricultural research is to develop crops that have both good yield and pest resistance. Often improving one of these traits has negative impact on the other, the so‐called growth‐defense tradeoff. In this study we uncover a mechanism in maize that allows the production of high levels of defense compounds using dedicated enzymes for shared precursor production. These findings can be used to guide synthetic biology approaches for agricultural improvement.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tpj.15941</doi><tpages>220</tpages><orcidid>https://orcid.org/0000-0003-2970-3183</orcidid><orcidid>https://orcid.org/0000-0003-1689-4005</orcidid><orcidid>https://orcid.org/0000-0001-6864-5452</orcidid><orcidid>https://orcid.org/0000-0002-6799-7031</orcidid><orcidid>https://orcid.org/0000-0002-2652-9485</orcidid><orcidid>https://orcid.org/0000-0002-6492-681X</orcidid><orcidid>https://orcid.org/0000-0003-4579-8290</orcidid><orcidid>https://orcid.org/0000-0002-3581-3517</orcidid><orcidid>https://orcid.org/0000-0001-5275-9797</orcidid><orcidid>https://orcid.org/0000-0003-4958-0379</orcidid><orcidid>https://orcid.org/0000-0002-6572-5999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2022-10, Vol.112 (1), p.207-220
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2702182515
source Wiley-Blackwell Open Access Backfiles; Wiley Online Library; IngentaConnect Open Access Journals; EZB Electronic Journals Library
subjects CRISPR
FPS gene
fungal
insect
isoprenoid
Metabolites
pathogen
Phenotypes
phytoalexin
Phytoalexins
Plant growth
tradeoff
Ubiquinone
Zea mays
title Dedicated farnesyl diphosphate synthases circumvent isoprenoid‐derived growth‐defense tradeoffs in Zea mays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dedicated%20farnesyl%20diphosphate%20synthases%20circumvent%20isoprenoid%E2%80%90derived%20growth%E2%80%90defense%20tradeoffs%20in%20Zea%20mays&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Tang,%20Hoang%20V.&rft.date=2022-10&rft.volume=112&rft.issue=1&rft.spage=207&rft.epage=220&rft.pages=207-220&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15941&rft_dat=%3Cproquest_cross%3E2702182515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720299718&rft_id=info:pmid/&rfr_iscdi=true