Transient development of magnetohydrodynamic wave mode conversion layers

We study the transmission, reflection, and absorption of ultralow frequency waves at density nonuniformities in low beta plasmas, such as plasma structures in the solar corona, inhomogeneities in the solar wind, and, at times, in the magnetopause. We simulate the time‐dependent interaction of a mono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2001-08, Vol.106 (A8), p.15609-15619
Hauptverfasser: De Keyser, J., Čadež, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15619
container_issue A8
container_start_page 15609
container_title Journal of Geophysical Research
container_volume 106
creator De Keyser, J.
Čadež, V.
description We study the transmission, reflection, and absorption of ultralow frequency waves at density nonuniformities in low beta plasmas, such as plasma structures in the solar corona, inhomogeneities in the solar wind, and, at times, in the magnetopause. We simulate the time‐dependent interaction of a monochromatic magnetohydrodynamic (MHD) wave with a planar plasma transition layer aligned with the magnetic field. When the incident wave front reaches the initially unperturbed transition layer, a resonant sheet starts to develop within a thin layer where the conditions for resonant MHD wave mode conversion are satisfied. In this sheet the wave amplitude is found to grow exponentially until a saturation level is reached due to dissipative effects. Dissipation controls the thickness of the sheet, the saturation level, and the time needed to reach the saturation regime. The resonantly absorbed energy, however, is essentially independent of the dissipation coefficient. The simulations are carried out in the context of linear resistive low beta magnetohydrodynamics. The simulation results are important for the case of the magnetopause as the enhanced wave amplitudes found inside the transition could promote diffusive mass transport across the layer.
doi_str_mv 10.1029/2001JA900045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27020118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27020118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4157-296716b92bd123764e2e80420d2ccbf65b87567cdde14fa72a03169482d2a1cb3</originalsourceid><addsrcrecordid>eNp9kEFP20AQhVeolYggN36AD4hTDbNje9c-plGTAFGrImiPq_XuGAy2N-yGUP97HBLRnnqad_i-p9Fj7ITDOQcsLhCAX00KAEizAzZCnokYEfATGwFP8xgQ5SEbh_AI74xIgY_Y4tbrLtTUrSNLG2rcqt1mV0Wtvu9o7R56653tO93WJnrVG4paZykyrtuQD7Xrokb3QzpmnyvdBBrv7xG7m327nS7i5Y_55XSyjE3KMxljISQXZYGl5ZhIkRJSDimCRWPKSmRlLjMhjbXE00pL1JBwUaQ5WtTclMkRO9v1rrx7fqGwVm0dDDWN7si9BIUSEDjPB_DLDjTeheCpUitft9r3ioPaLqb-XWzAT_e9OhjdVMMspg5_neHbRG6xZIe91g31_61UV_ObCc-KXA5WvLPqsKY_H5b2T0rIoVb9_j5XP7_Or2e_bmZqmbwBTPqILQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27020118</pqid></control><display><type>article</type><title>Transient development of magnetohydrodynamic wave mode conversion layers</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>De Keyser, J. ; Čadež, V.</creator><creatorcontrib>De Keyser, J. ; Čadež, V.</creatorcontrib><description>We study the transmission, reflection, and absorption of ultralow frequency waves at density nonuniformities in low beta plasmas, such as plasma structures in the solar corona, inhomogeneities in the solar wind, and, at times, in the magnetopause. We simulate the time‐dependent interaction of a monochromatic magnetohydrodynamic (MHD) wave with a planar plasma transition layer aligned with the magnetic field. When the incident wave front reaches the initially unperturbed transition layer, a resonant sheet starts to develop within a thin layer where the conditions for resonant MHD wave mode conversion are satisfied. In this sheet the wave amplitude is found to grow exponentially until a saturation level is reached due to dissipative effects. Dissipation controls the thickness of the sheet, the saturation level, and the time needed to reach the saturation regime. The resonantly absorbed energy, however, is essentially independent of the dissipation coefficient. The simulations are carried out in the context of linear resistive low beta magnetohydrodynamics. The simulation results are important for the case of the magnetopause as the enhanced wave amplitudes found inside the transition could promote diffusive mass transport across the layer.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2001JA900045</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Astronomy ; Corona. Coronal loops, streamers, and holes ; Earth, ocean, space ; Electrostatic and electromagnetic waves ; Exact sciences and technology ; External geophysics ; Interplanetary space ; Physics of the magnetosphere ; Solar physics ; Solar system ; Solar wind plasma</subject><ispartof>Journal of Geophysical Research, 2001-08, Vol.106 (A8), p.15609-15619</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4157-296716b92bd123764e2e80420d2ccbf65b87567cdde14fa72a03169482d2a1cb3</citedby><cites>FETCH-LOGICAL-c4157-296716b92bd123764e2e80420d2ccbf65b87567cdde14fa72a03169482d2a1cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2001JA900045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2001JA900045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1123375$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Keyser, J.</creatorcontrib><creatorcontrib>Čadež, V.</creatorcontrib><title>Transient development of magnetohydrodynamic wave mode conversion layers</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>We study the transmission, reflection, and absorption of ultralow frequency waves at density nonuniformities in low beta plasmas, such as plasma structures in the solar corona, inhomogeneities in the solar wind, and, at times, in the magnetopause. We simulate the time‐dependent interaction of a monochromatic magnetohydrodynamic (MHD) wave with a planar plasma transition layer aligned with the magnetic field. When the incident wave front reaches the initially unperturbed transition layer, a resonant sheet starts to develop within a thin layer where the conditions for resonant MHD wave mode conversion are satisfied. In this sheet the wave amplitude is found to grow exponentially until a saturation level is reached due to dissipative effects. Dissipation controls the thickness of the sheet, the saturation level, and the time needed to reach the saturation regime. The resonantly absorbed energy, however, is essentially independent of the dissipation coefficient. The simulations are carried out in the context of linear resistive low beta magnetohydrodynamics. The simulation results are important for the case of the magnetopause as the enhanced wave amplitudes found inside the transition could promote diffusive mass transport across the layer.</description><subject>Astronomy</subject><subject>Corona. Coronal loops, streamers, and holes</subject><subject>Earth, ocean, space</subject><subject>Electrostatic and electromagnetic waves</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Interplanetary space</subject><subject>Physics of the magnetosphere</subject><subject>Solar physics</subject><subject>Solar system</subject><subject>Solar wind plasma</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP20AQhVeolYggN36AD4hTDbNje9c-plGTAFGrImiPq_XuGAy2N-yGUP97HBLRnnqad_i-p9Fj7ITDOQcsLhCAX00KAEizAzZCnokYEfATGwFP8xgQ5SEbh_AI74xIgY_Y4tbrLtTUrSNLG2rcqt1mV0Wtvu9o7R56653tO93WJnrVG4paZykyrtuQD7Xrokb3QzpmnyvdBBrv7xG7m327nS7i5Y_55XSyjE3KMxljISQXZYGl5ZhIkRJSDimCRWPKSmRlLjMhjbXE00pL1JBwUaQ5WtTclMkRO9v1rrx7fqGwVm0dDDWN7si9BIUSEDjPB_DLDjTeheCpUitft9r3ioPaLqb-XWzAT_e9OhjdVMMspg5_neHbRG6xZIe91g31_61UV_ObCc-KXA5WvLPqsKY_H5b2T0rIoVb9_j5XP7_Or2e_bmZqmbwBTPqILQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>De Keyser, J.</creator><creator>Čadež, V.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20010801</creationdate><title>Transient development of magnetohydrodynamic wave mode conversion layers</title><author>De Keyser, J. ; Čadež, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4157-296716b92bd123764e2e80420d2ccbf65b87567cdde14fa72a03169482d2a1cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Astronomy</topic><topic>Corona. Coronal loops, streamers, and holes</topic><topic>Earth, ocean, space</topic><topic>Electrostatic and electromagnetic waves</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Interplanetary space</topic><topic>Physics of the magnetosphere</topic><topic>Solar physics</topic><topic>Solar system</topic><topic>Solar wind plasma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Keyser, J.</creatorcontrib><creatorcontrib>Čadež, V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Keyser, J.</au><au>Čadež, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient development of magnetohydrodynamic wave mode conversion layers</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>106</volume><issue>A8</issue><spage>15609</spage><epage>15619</epage><pages>15609-15619</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We study the transmission, reflection, and absorption of ultralow frequency waves at density nonuniformities in low beta plasmas, such as plasma structures in the solar corona, inhomogeneities in the solar wind, and, at times, in the magnetopause. We simulate the time‐dependent interaction of a monochromatic magnetohydrodynamic (MHD) wave with a planar plasma transition layer aligned with the magnetic field. When the incident wave front reaches the initially unperturbed transition layer, a resonant sheet starts to develop within a thin layer where the conditions for resonant MHD wave mode conversion are satisfied. In this sheet the wave amplitude is found to grow exponentially until a saturation level is reached due to dissipative effects. Dissipation controls the thickness of the sheet, the saturation level, and the time needed to reach the saturation regime. The resonantly absorbed energy, however, is essentially independent of the dissipation coefficient. The simulations are carried out in the context of linear resistive low beta magnetohydrodynamics. The simulation results are important for the case of the magnetopause as the enhanced wave amplitudes found inside the transition could promote diffusive mass transport across the layer.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2001JA900045</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2001-08, Vol.106 (A8), p.15609-15619
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_27020118
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Astronomy
Corona. Coronal loops, streamers, and holes
Earth, ocean, space
Electrostatic and electromagnetic waves
Exact sciences and technology
External geophysics
Interplanetary space
Physics of the magnetosphere
Solar physics
Solar system
Solar wind plasma
title Transient development of magnetohydrodynamic wave mode conversion layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20development%20of%20magnetohydrodynamic%20wave%20mode%20conversion%20layers&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=De%20Keyser,%20J.&rft.date=2001-08-01&rft.volume=106&rft.issue=A8&rft.spage=15609&rft.epage=15619&rft.pages=15609-15619&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2001JA900045&rft_dat=%3Cproquest_cross%3E27020118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27020118&rft_id=info:pmid/&rfr_iscdi=true