Temperature and Rate Effects on GRP Tubes Under Tensile Hoop Loading
A comprehensive study was undertaken to characterise glass fibre reinforced plastic (GRP) tubes at different temperatures and strain rates. The tests were performed on tubes of 25°, 55° and 75° winding angle. The tubes were burst under internal radial pressure with minimum end constraints. Two separ...
Gespeichert in:
Veröffentlicht in: | Applied composite materials 2001-01, Vol.8 (1), p.1-24 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A comprehensive study was undertaken to characterise glass fibre reinforced plastic (GRP) tubes at different temperatures and strain rates. The tests were performed on tubes of 25°, 55° and 75° winding angle. The tubes were burst under internal radial pressure with minimum end constraints. Two separate rigs were used, one for the static and the other for the dynamic tests. The tests were carried out at three temperatures; -46°C (low temperature), +20°C (room temperature) and +70°C (high temperature). For each test the internal pressure and the strains in both circumferential and longitudinal directions were recorded on suitable digital processing equipment. For a particular batch of tubes tested at three different temperatures, there is in general a decrease in hoop strength with increasing temperature during quasi-static tests. The use of a non-structural liner during such tests led to an increase in ultimate hoop strain of 55° tubes, especially at high temperature. The corresponding increase in ultimate hoop strain was markedly less in the case of 75° and almost negligible in the case of 25° tubes. Testing the tubes at high strain rates resulted in substantial increases in burst strength and ultimate hoop strain as compared with the quasi-static and low strain rate values. The mode of failure of 75° tube is a catastrophic fibre breakage under all test conditions. The mode of failure of 55° tube is a combination of weeping and fibre failure. The 25° tubes are characterised by matrix failure, which is very severe at high strain rates.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0929-189X 1573-4897 |
DOI: | 10.1023/A:1008998423252 |