Matrices, Vector Spaces, and Information Retrieval
The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of tex...
Gespeichert in:
Veröffentlicht in: | SIAM review 1999-06, Vol.41 (2), p.335-362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 2 |
container_start_page | 335 |
container_title | SIAM review |
container_volume | 41 |
creator | Berry, Michael W. Drmač, Zlatko Jessup, Elizabeth R. |
description | The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of textual materials on a particular topic, procedures for indexing or extracting the knowledge or conceptual information contained in them can be lacking. Recently developed information retrieval technologies are based on the concept of a vector space. Data are modeled as a matrix, and a user's query of the database is represented as a vector. Relevant documents in the database are then identified via simple vector operations. Orthogonal factorizations of the matrix provide mechanisms for handling uncertainty in the database itself. The purpose of this paper is to show how such fundamental mathematical concepts from linear algebra can be used to manage and index large text collections. |
doi_str_mv | 10.1137/S0036144598347035 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_27013136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2653077</jstor_id><sourcerecordid>2653077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ff1eb71dc57b15fdced0648bbb4a1051646b88c570003eb426f9c0b5edcbd76b3</originalsourceid><addsrcrecordid>eNplkEtLw0AUhQdRsFZ_gOAiiLgyeu88k6UUH4WKYNVtmJnMQEqa1Jm04L83sUVBV5fD-c7hcgg5RbhGZOpmDsAkci7yjHEFTOyREUIuUkUB9slosNPBPyRHMS6g1xnLR4Q-6S5U1sWr5N3Zrg3JfKW_pW7KZNr4Nix1V7VN8uJ60G10fUwOvK6jO9ndMXm7v3udPKaz54fp5HaWWpbzLvUenVFYWqEMCl9aV4LkmTGGawSBkkuTZb07_OIMp9LnFoxwpTWlkoaNyeW2dxXaj7WLXbGsonV1rRvXrmNBFSBDJnvw_A-4aNeh6X8rMOcUqBADhFvIhjbG4HyxCtVSh88CoRgmLP5N2GcudsU6Wl37oBtbxd9gxiXNhuqzLbaI_YA_NpWCgVLsC_9seBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194202556</pqid></control><display><type>article</type><title>Matrices, Vector Spaces, and Information Retrieval</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Berry, Michael W. ; Drmač, Zlatko ; Jessup, Elizabeth R.</creator><creatorcontrib>Berry, Michael W. ; Drmač, Zlatko ; Jessup, Elizabeth R.</creatorcontrib><description>The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of textual materials on a particular topic, procedures for indexing or extracting the knowledge or conceptual information contained in them can be lacking. Recently developed information retrieval technologies are based on the concept of a vector space. Data are modeled as a matrix, and a user's query of the database is represented as a vector. Relevant documents in the database are then identified via simple vector operations. Orthogonal factorizations of the matrix provide mechanisms for handling uncertainty in the database itself. The purpose of this paper is to show how such fundamental mathematical concepts from linear algebra can be used to manage and index large text collections.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/S0036144598347035</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Applied sciences ; Approximation ; Baking ; Computer science; control theory; systems ; Cosine function ; Education ; Exact sciences and technology ; Factorization ; Information retrieval ; Information retrieval. Graph ; Linear and multilinear algebra, matrix theory ; Linear programming ; Mathematical vectors ; Mathematics ; Matrices ; Matrix ; Memory organisation. Data processing ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use ; Software ; Theoretical computing ; Vector space models ; Vector spaces</subject><ispartof>SIAM review, 1999-06, Vol.41 (2), p.335-362</ispartof><rights>Copyright 1999 Society for Industrial and Applied Mathematics</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Jun 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ff1eb71dc57b15fdced0648bbb4a1051646b88c570003eb426f9c0b5edcbd76b3</citedby><cites>FETCH-LOGICAL-c394t-ff1eb71dc57b15fdced0648bbb4a1051646b88c570003eb426f9c0b5edcbd76b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2653077$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2653077$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1846286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berry, Michael W.</creatorcontrib><creatorcontrib>Drmač, Zlatko</creatorcontrib><creatorcontrib>Jessup, Elizabeth R.</creatorcontrib><title>Matrices, Vector Spaces, and Information Retrieval</title><title>SIAM review</title><description>The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of textual materials on a particular topic, procedures for indexing or extracting the knowledge or conceptual information contained in them can be lacking. Recently developed information retrieval technologies are based on the concept of a vector space. Data are modeled as a matrix, and a user's query of the database is represented as a vector. Relevant documents in the database are then identified via simple vector operations. Orthogonal factorizations of the matrix provide mechanisms for handling uncertainty in the database itself. The purpose of this paper is to show how such fundamental mathematical concepts from linear algebra can be used to manage and index large text collections.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Baking</subject><subject>Computer science; control theory; systems</subject><subject>Cosine function</subject><subject>Education</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Information retrieval</subject><subject>Information retrieval. Graph</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Linear programming</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Memory organisation. Data processing</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Theoretical computing</subject><subject>Vector space models</subject><subject>Vector spaces</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNplkEtLw0AUhQdRsFZ_gOAiiLgyeu88k6UUH4WKYNVtmJnMQEqa1Jm04L83sUVBV5fD-c7hcgg5RbhGZOpmDsAkci7yjHEFTOyREUIuUkUB9slosNPBPyRHMS6g1xnLR4Q-6S5U1sWr5N3Zrg3JfKW_pW7KZNr4Nix1V7VN8uJ60G10fUwOvK6jO9ndMXm7v3udPKaz54fp5HaWWpbzLvUenVFYWqEMCl9aV4LkmTGGawSBkkuTZb07_OIMp9LnFoxwpTWlkoaNyeW2dxXaj7WLXbGsonV1rRvXrmNBFSBDJnvw_A-4aNeh6X8rMOcUqBADhFvIhjbG4HyxCtVSh88CoRgmLP5N2GcudsU6Wl37oBtbxd9gxiXNhuqzLbaI_YA_NpWCgVLsC_9seBk</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Berry, Michael W.</creator><creator>Drmač, Zlatko</creator><creator>Jessup, Elizabeth R.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990601</creationdate><title>Matrices, Vector Spaces, and Information Retrieval</title><author>Berry, Michael W. ; Drmač, Zlatko ; Jessup, Elizabeth R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ff1eb71dc57b15fdced0648bbb4a1051646b88c570003eb426f9c0b5edcbd76b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Baking</topic><topic>Computer science; control theory; systems</topic><topic>Cosine function</topic><topic>Education</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Information retrieval</topic><topic>Information retrieval. Graph</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Linear programming</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Memory organisation. Data processing</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Theoretical computing</topic><topic>Vector space models</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berry, Michael W.</creatorcontrib><creatorcontrib>Drmač, Zlatko</creatorcontrib><creatorcontrib>Jessup, Elizabeth R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berry, Michael W.</au><au>Drmač, Zlatko</au><au>Jessup, Elizabeth R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrices, Vector Spaces, and Information Retrieval</atitle><jtitle>SIAM review</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>41</volume><issue>2</issue><spage>335</spage><epage>362</epage><pages>335-362</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of textual materials on a particular topic, procedures for indexing or extracting the knowledge or conceptual information contained in them can be lacking. Recently developed information retrieval technologies are based on the concept of a vector space. Data are modeled as a matrix, and a user's query of the database is represented as a vector. Relevant documents in the database are then identified via simple vector operations. Orthogonal factorizations of the matrix provide mechanisms for handling uncertainty in the database itself. The purpose of this paper is to show how such fundamental mathematical concepts from linear algebra can be used to manage and index large text collections.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036144598347035</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 1999-06, Vol.41 (2), p.335-362 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_proquest_miscellaneous_27013136 |
source | Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; Business Source Complete; JSTOR Mathematics & Statistics |
subjects | Algebra Applied sciences Approximation Baking Computer science control theory systems Cosine function Education Exact sciences and technology Factorization Information retrieval Information retrieval. Graph Linear and multilinear algebra, matrix theory Linear programming Mathematical vectors Mathematics Matrices Matrix Memory organisation. Data processing Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use Software Theoretical computing Vector space models Vector spaces |
title | Matrices, Vector Spaces, and Information Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrices,%20Vector%20Spaces,%20and%20Information%20Retrieval&rft.jtitle=SIAM%20review&rft.au=Berry,%20Michael%20W.&rft.date=1999-06-01&rft.volume=41&rft.issue=2&rft.spage=335&rft.epage=362&rft.pages=335-362&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/S0036144598347035&rft_dat=%3Cjstor_proqu%3E2653077%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194202556&rft_id=info:pmid/&rft_jstor_id=2653077&rfr_iscdi=true |