On a robust multilevel method applied for solving large-scale linear elasticity problems

The paper discusses an iterative scheme for solving large‐scale three‐dimensional linear elasticity problems, discretized on a tensor product of two‐dimensional and one‐dimensional meshes. A framework is chosen of the additive AMLI method to develop a preconditioner of a ‘black‐box’ type which is ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in numerical methods in engineering 1999-03, Vol.15 (3), p.153-165
1. Verfasser: Padiy, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 3
container_start_page 153
container_title Communications in numerical methods in engineering
container_volume 15
creator Padiy, Alexander
description The paper discusses an iterative scheme for solving large‐scale three‐dimensional linear elasticity problems, discretized on a tensor product of two‐dimensional and one‐dimensional meshes. A framework is chosen of the additive AMLI method to develop a preconditioner of a ‘black‐box’ type which is robust with respect to discontinuities of the problem coefficients and imposes only weak (and acceptable in practice) restrictions on the choice of the meshing procedure. The preconditioner works on a hierarchical sequence of nested finite element spaces to solve the problem with arithmetic cost, nearly proportional to the number of degrees of freedom on the finest mesh. It is particularly well suited for the case when the solution is known to be strongly varying in certain subregions of the domain and the mesh is locally prerefined there to reduce the discretization error. Copyright © 1999 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1099-0887(199903)15:3<153::AID-CNM231>3.0.CO;2-L
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27011295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27011295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4891-ac08b02b62a7b2ffc68f25b8b05ee9bead03b2c9d11c58fcabd2d38b69a998753</originalsourceid><addsrcrecordid>eNqFkF1v0zAUhiPEJMbgP_gCoe3C3bFNErugSVNgo1JpJT53d-Q4zjA4SWen2_rvlyjVuACJG9s6ev28R0-SnDGYMQB-evxlUSxOGChFQcr8mCmlQJywdC7esVTM5-eL97RYfeKCnYkZzIr1W06XT5LDxy9Px3emqORKPUuex_gLABRIOEyu1i3RJHTlNvak2freeXtrPWls_7OriN5svLMVqbtAYudvXXtNvA7XlkajvSXetVYHYr2OvTOu35HNwPK2iS-Sg1r7aF_u76Pk28WHr8VHulxfLorzJTVvpGJUG5Al8DLjOi95XZtM1jwth1lqrSqtrkCU3KiKMZPK2uiy4pWQZaa0UjJPxVHyeuIOxTdbG3tsXDTWe93abhuR58AYV2Pw-xQ0oYsx2Bo3wTU67JABjqIRR9E4WsPRGk6ikaU4HgJxEI2T6GECWKyR43IAv9pvoEcpddCtcfEPPWcZh2yIXU2xu0Hx7q_y_3T_s3o_GdB0QrvY2_tHtA6_MctFnuKP1SVmbLWSecHws3gAQrOufA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27011295</pqid></control><display><type>article</type><title>On a robust multilevel method applied for solving large-scale linear elasticity problems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Padiy, Alexander</creator><creatorcontrib>Padiy, Alexander</creatorcontrib><description>The paper discusses an iterative scheme for solving large‐scale three‐dimensional linear elasticity problems, discretized on a tensor product of two‐dimensional and one‐dimensional meshes. A framework is chosen of the additive AMLI method to develop a preconditioner of a ‘black‐box’ type which is robust with respect to discontinuities of the problem coefficients and imposes only weak (and acceptable in practice) restrictions on the choice of the meshing procedure. The preconditioner works on a hierarchical sequence of nested finite element spaces to solve the problem with arithmetic cost, nearly proportional to the number of degrees of freedom on the finest mesh. It is particularly well suited for the case when the solution is known to be strongly varying in certain subregions of the domain and the mesh is locally prerefined there to reduce the discretization error. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1069-8299</identifier><identifier>EISSN: 1099-0887</identifier><identifier>DOI: 10.1002/(SICI)1099-0887(199903)15:3&lt;153::AID-CNM231&gt;3.0.CO;2-L</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computational techniques ; Continuous cycle engines: steam and gas turbines, jet engines ; elasticity problems ; Engines and turbines ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; iterative methods ; Mathematical methods in physics ; Mechanical engineering. Machine design ; non-uniform discretization meshes ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Strength of materials (elasticity, plasticity, buckling, etc.) ; Structural analysis. Stresses ; Structural and continuum mechanics</subject><ispartof>Communications in numerical methods in engineering, 1999-03, Vol.15 (3), p.153-165</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Ltd.</rights><rights>1999 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4891-ac08b02b62a7b2ffc68f25b8b05ee9bead03b2c9d11c58fcabd2d38b69a998753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291099-0887%28199903%2915%3A3%3C153%3A%3AAID-CNM231%3E3.0.CO%3B2-L$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291099-0887%28199903%2915%3A3%3C153%3A%3AAID-CNM231%3E3.0.CO%3B2-L$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1716206$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Padiy, Alexander</creatorcontrib><title>On a robust multilevel method applied for solving large-scale linear elasticity problems</title><title>Communications in numerical methods in engineering</title><addtitle>Commun. Numer. Meth. Engng</addtitle><description>The paper discusses an iterative scheme for solving large‐scale three‐dimensional linear elasticity problems, discretized on a tensor product of two‐dimensional and one‐dimensional meshes. A framework is chosen of the additive AMLI method to develop a preconditioner of a ‘black‐box’ type which is robust with respect to discontinuities of the problem coefficients and imposes only weak (and acceptable in practice) restrictions on the choice of the meshing procedure. The preconditioner works on a hierarchical sequence of nested finite element spaces to solve the problem with arithmetic cost, nearly proportional to the number of degrees of freedom on the finest mesh. It is particularly well suited for the case when the solution is known to be strongly varying in certain subregions of the domain and the mesh is locally prerefined there to reduce the discretization error. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computational techniques</subject><subject>Continuous cycle engines: steam and gas turbines, jet engines</subject><subject>elasticity problems</subject><subject>Engines and turbines</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>iterative methods</subject><subject>Mathematical methods in physics</subject><subject>Mechanical engineering. Machine design</subject><subject>non-uniform discretization meshes</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Strength of materials (elasticity, plasticity, buckling, etc.)</subject><subject>Structural analysis. Stresses</subject><subject>Structural and continuum mechanics</subject><issn>1069-8299</issn><issn>1099-0887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkF1v0zAUhiPEJMbgP_gCoe3C3bFNErugSVNgo1JpJT53d-Q4zjA4SWen2_rvlyjVuACJG9s6ev28R0-SnDGYMQB-evxlUSxOGChFQcr8mCmlQJywdC7esVTM5-eL97RYfeKCnYkZzIr1W06XT5LDxy9Px3emqORKPUuex_gLABRIOEyu1i3RJHTlNvak2freeXtrPWls_7OriN5svLMVqbtAYudvXXtNvA7XlkajvSXetVYHYr2OvTOu35HNwPK2iS-Sg1r7aF_u76Pk28WHr8VHulxfLorzJTVvpGJUG5Al8DLjOi95XZtM1jwth1lqrSqtrkCU3KiKMZPK2uiy4pWQZaa0UjJPxVHyeuIOxTdbG3tsXDTWe93abhuR58AYV2Pw-xQ0oYsx2Bo3wTU67JABjqIRR9E4WsPRGk6ikaU4HgJxEI2T6GECWKyR43IAv9pvoEcpddCtcfEPPWcZh2yIXU2xu0Hx7q_y_3T_s3o_GdB0QrvY2_tHtA6_MctFnuKP1SVmbLWSecHws3gAQrOufA</recordid><startdate>199903</startdate><enddate>199903</enddate><creator>Padiy, Alexander</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199903</creationdate><title>On a robust multilevel method applied for solving large-scale linear elasticity problems</title><author>Padiy, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4891-ac08b02b62a7b2ffc68f25b8b05ee9bead03b2c9d11c58fcabd2d38b69a998753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computational techniques</topic><topic>Continuous cycle engines: steam and gas turbines, jet engines</topic><topic>elasticity problems</topic><topic>Engines and turbines</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>iterative methods</topic><topic>Mathematical methods in physics</topic><topic>Mechanical engineering. Machine design</topic><topic>non-uniform discretization meshes</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Strength of materials (elasticity, plasticity, buckling, etc.)</topic><topic>Structural analysis. Stresses</topic><topic>Structural and continuum mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Padiy, Alexander</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Communications in numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padiy, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a robust multilevel method applied for solving large-scale linear elasticity problems</atitle><jtitle>Communications in numerical methods in engineering</jtitle><addtitle>Commun. Numer. Meth. Engng</addtitle><date>1999-03</date><risdate>1999</risdate><volume>15</volume><issue>3</issue><spage>153</spage><epage>165</epage><pages>153-165</pages><issn>1069-8299</issn><eissn>1099-0887</eissn><abstract>The paper discusses an iterative scheme for solving large‐scale three‐dimensional linear elasticity problems, discretized on a tensor product of two‐dimensional and one‐dimensional meshes. A framework is chosen of the additive AMLI method to develop a preconditioner of a ‘black‐box’ type which is robust with respect to discontinuities of the problem coefficients and imposes only weak (and acceptable in practice) restrictions on the choice of the meshing procedure. The preconditioner works on a hierarchical sequence of nested finite element spaces to solve the problem with arithmetic cost, nearly proportional to the number of degrees of freedom on the finest mesh. It is particularly well suited for the case when the solution is known to be strongly varying in certain subregions of the domain and the mesh is locally prerefined there to reduce the discretization error. Copyright © 1999 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1099-0887(199903)15:3&lt;153::AID-CNM231&gt;3.0.CO;2-L</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-8299
ispartof Communications in numerical methods in engineering, 1999-03, Vol.15 (3), p.153-165
issn 1069-8299
1099-0887
language eng
recordid cdi_proquest_miscellaneous_27011295
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Buildings. Public works
Computational techniques
Continuous cycle engines: steam and gas turbines, jet engines
elasticity problems
Engines and turbines
Exact sciences and technology
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
iterative methods
Mathematical methods in physics
Mechanical engineering. Machine design
non-uniform discretization meshes
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Strength of materials (elasticity, plasticity, buckling, etc.)
Structural analysis. Stresses
Structural and continuum mechanics
title On a robust multilevel method applied for solving large-scale linear elasticity problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20robust%20multilevel%20method%20applied%20for%20solving%20large-scale%20linear%20elasticity%20problems&rft.jtitle=Communications%20in%20numerical%20methods%20in%20engineering&rft.au=Padiy,%20Alexander&rft.date=1999-03&rft.volume=15&rft.issue=3&rft.spage=153&rft.epage=165&rft.pages=153-165&rft.issn=1069-8299&rft.eissn=1099-0887&rft_id=info:doi/10.1002/(SICI)1099-0887(199903)15:3%3C153::AID-CNM231%3E3.0.CO;2-L&rft_dat=%3Cproquest_cross%3E27011295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27011295&rft_id=info:pmid/&rfr_iscdi=true