Immobility of protons in ice from 30 to 190 K

The anomalously fast motion of hydronium ions (H 3 O + ) in water is often attributed to the Grotthuss mechanism 1 , 2 , whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1999-04, Vol.398 (6726), p.405-407
Hauptverfasser: Cowin, J. P., Tsekouras, A. A., Iedema, M. J., Wu, K., Ellison, G. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 6726
container_start_page 405
container_title Nature (London)
container_volume 398
creator Cowin, J. P.
Tsekouras, A. A.
Iedema, M. J.
Wu, K.
Ellison, G. B.
description The anomalously fast motion of hydronium ions (H 3 O + ) in water is often attributed to the Grotthuss mechanism 1 , 2 , whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins 3 and in stratospheric ice particles 4 . Transport of hydronium ions in ice is thought to be closely related to its transport in water 1 , 2 . But whereas claims have been made that such tunnelling can persist even at 0 K in ice 5 , 6 , 7 , counter-claims suggest that the activation energy for hydronium motion in ice is non-zero 8 , 9 , 10 . Here we use ‘soft-landing’ 11 , 12 , 13 of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10 8  V m −1 .
doi_str_mv 10.1038/18848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27011160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27011160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqX0P3gAttA7O7GdEVV8VFRigdlyXAe5SuJiJ0M3Vv4mv4RAK1ViuuEePe_dS8gM4RaBqzkqlasTMsFciiwXSp6SCQBTGSguzslFShsAKFDmEzJftm2ofOP7HQ013cbQhy5R31FvHa1jaCkH2geKJXx_fj1fkrPaNMnNDnNK3h7uXxdP2erlcbm4W2WWS9FnpWIOlLQIwlVrpmwFWFkhOXMG7RpMUZRogQnOmLHgjKsKLrgBYbmyheNTcrP3jhd9DC71uvXJuqYxnQtD0kwCIgoYwes9aGNIKbpab6NvTdxpBP1bh_6rY-SuDkKTrGnqaDrr0xGWJXKmjrlp3HTvLupNGGI3vvrP9wOHNGhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27011160</pqid></control><display><type>article</type><title>Immobility of protons in ice from 30 to 190 K</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cowin, J. P. ; Tsekouras, A. A. ; Iedema, M. J. ; Wu, K. ; Ellison, G. B.</creator><creatorcontrib>Cowin, J. P. ; Tsekouras, A. A. ; Iedema, M. J. ; Wu, K. ; Ellison, G. B.</creatorcontrib><description>The anomalously fast motion of hydronium ions (H 3 O + ) in water is often attributed to the Grotthuss mechanism 1 , 2 , whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins 3 and in stratospheric ice particles 4 . Transport of hydronium ions in ice is thought to be closely related to its transport in water 1 , 2 . But whereas claims have been made that such tunnelling can persist even at 0 K in ice 5 , 6 , 7 , counter-claims suggest that the activation energy for hydronium motion in ice is non-zero 8 , 9 , 10 . Here we use ‘soft-landing’ 11 , 12 , 13 of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10 8  V m −1 .</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/18848</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion in solids ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Self-diffusion and ionic conduction in nonmetals ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Nature (London), 1999-04, Vol.398 (6726), p.405-407</ispartof><rights>Macmillan Magazines Ltd. 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</citedby><cites>FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/18848$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/18848$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1791328$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cowin, J. P.</creatorcontrib><creatorcontrib>Tsekouras, A. A.</creatorcontrib><creatorcontrib>Iedema, M. J.</creatorcontrib><creatorcontrib>Wu, K.</creatorcontrib><creatorcontrib>Ellison, G. B.</creatorcontrib><title>Immobility of protons in ice from 30 to 190 K</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The anomalously fast motion of hydronium ions (H 3 O + ) in water is often attributed to the Grotthuss mechanism 1 , 2 , whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins 3 and in stratospheric ice particles 4 . Transport of hydronium ions in ice is thought to be closely related to its transport in water 1 , 2 . But whereas claims have been made that such tunnelling can persist even at 0 K in ice 5 , 6 , 7 , counter-claims suggest that the activation energy for hydronium motion in ice is non-zero 8 , 9 , 10 . Here we use ‘soft-landing’ 11 , 12 , 13 of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10 8  V m −1 .</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-diffusion and ionic conduction in nonmetals</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqX0P3gAttA7O7GdEVV8VFRigdlyXAe5SuJiJ0M3Vv4mv4RAK1ViuuEePe_dS8gM4RaBqzkqlasTMsFciiwXSp6SCQBTGSguzslFShsAKFDmEzJftm2ofOP7HQ013cbQhy5R31FvHa1jaCkH2geKJXx_fj1fkrPaNMnNDnNK3h7uXxdP2erlcbm4W2WWS9FnpWIOlLQIwlVrpmwFWFkhOXMG7RpMUZRogQnOmLHgjKsKLrgBYbmyheNTcrP3jhd9DC71uvXJuqYxnQtD0kwCIgoYwes9aGNIKbpab6NvTdxpBP1bh_6rY-SuDkKTrGnqaDrr0xGWJXKmjrlp3HTvLupNGGI3vvrP9wOHNGhY</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Cowin, J. P.</creator><creator>Tsekouras, A. A.</creator><creator>Iedema, M. J.</creator><creator>Wu, K.</creator><creator>Ellison, G. B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19990401</creationdate><title>Immobility of protons in ice from 30 to 190 K</title><author>Cowin, J. P. ; Tsekouras, A. A. ; Iedema, M. J. ; Wu, K. ; Ellison, G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-diffusion and ionic conduction in nonmetals</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowin, J. P.</creatorcontrib><creatorcontrib>Tsekouras, A. A.</creatorcontrib><creatorcontrib>Iedema, M. J.</creatorcontrib><creatorcontrib>Wu, K.</creatorcontrib><creatorcontrib>Ellison, G. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowin, J. P.</au><au>Tsekouras, A. A.</au><au>Iedema, M. J.</au><au>Wu, K.</au><au>Ellison, G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobility of protons in ice from 30 to 190 K</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>398</volume><issue>6726</issue><spage>405</spage><epage>407</epage><pages>405-407</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The anomalously fast motion of hydronium ions (H 3 O + ) in water is often attributed to the Grotthuss mechanism 1 , 2 , whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins 3 and in stratospheric ice particles 4 . Transport of hydronium ions in ice is thought to be closely related to its transport in water 1 , 2 . But whereas claims have been made that such tunnelling can persist even at 0 K in ice 5 , 6 , 7 , counter-claims suggest that the activation energy for hydronium motion in ice is non-zero 8 , 9 , 10 . Here we use ‘soft-landing’ 11 , 12 , 13 of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10 8  V m −1 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/18848</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1999-04, Vol.398 (6726), p.405-407
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_27011160
source Nature; SpringerLink Journals - AutoHoldings
subjects Condensed matter: structure, mechanical and thermal properties
Diffusion in solids
Exact sciences and technology
Humanities and Social Sciences
letter
multidisciplinary
Physics
Science
Science (multidisciplinary)
Self-diffusion and ionic conduction in nonmetals
Transport properties of condensed matter (nonelectronic)
title Immobility of protons in ice from 30 to 190 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobility%20of%20protons%20in%20ice%20from%2030%20to%20190%E2%80%89K&rft.jtitle=Nature%20(London)&rft.au=Cowin,%20J.%20P.&rft.date=1999-04-01&rft.volume=398&rft.issue=6726&rft.spage=405&rft.epage=407&rft.pages=405-407&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/18848&rft_dat=%3Cproquest_cross%3E27011160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27011160&rft_id=info:pmid/&rfr_iscdi=true