Immobility of protons in ice from 30 to 190 K
The anomalously fast motion of hydronium ions (H 3 O + ) in water is often attributed to the Grotthuss mechanism 1 , 2 , whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in prote...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1999-04, Vol.398 (6726), p.405-407 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 6726 |
container_start_page | 405 |
container_title | Nature (London) |
container_volume | 398 |
creator | Cowin, J. P. Tsekouras, A. A. Iedema, M. J. Wu, K. Ellison, G. B. |
description | The anomalously fast motion of hydronium ions (H
3
O
+
) in water is often attributed to the Grotthuss mechanism
1
,
2
, whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins
3
and in stratospheric ice particles
4
. Transport of hydronium ions in ice is thought to be closely related to its transport in water
1
,
2
. But whereas claims have been made that such tunnelling can persist even at 0 K in ice
5
,
6
,
7
, counter-claims suggest that the activation energy for hydronium motion in ice is non-zero
8
,
9
,
10
. Here we use ‘soft-landing’
11
,
12
,
13
of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10
8
V m
−1
. |
doi_str_mv | 10.1038/18848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27011160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27011160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqX0P3gAttA7O7GdEVV8VFRigdlyXAe5SuJiJ0M3Vv4mv4RAK1ViuuEePe_dS8gM4RaBqzkqlasTMsFciiwXSp6SCQBTGSguzslFShsAKFDmEzJftm2ofOP7HQ013cbQhy5R31FvHa1jaCkH2geKJXx_fj1fkrPaNMnNDnNK3h7uXxdP2erlcbm4W2WWS9FnpWIOlLQIwlVrpmwFWFkhOXMG7RpMUZRogQnOmLHgjKsKLrgBYbmyheNTcrP3jhd9DC71uvXJuqYxnQtD0kwCIgoYwes9aGNIKbpab6NvTdxpBP1bh_6rY-SuDkKTrGnqaDrr0xGWJXKmjrlp3HTvLupNGGI3vvrP9wOHNGhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27011160</pqid></control><display><type>article</type><title>Immobility of protons in ice from 30 to 190 K</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cowin, J. P. ; Tsekouras, A. A. ; Iedema, M. J. ; Wu, K. ; Ellison, G. B.</creator><creatorcontrib>Cowin, J. P. ; Tsekouras, A. A. ; Iedema, M. J. ; Wu, K. ; Ellison, G. B.</creatorcontrib><description>The anomalously fast motion of hydronium ions (H
3
O
+
) in water is often attributed to the Grotthuss mechanism
1
,
2
, whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins
3
and in stratospheric ice particles
4
. Transport of hydronium ions in ice is thought to be closely related to its transport in water
1
,
2
. But whereas claims have been made that such tunnelling can persist even at 0 K in ice
5
,
6
,
7
, counter-claims suggest that the activation energy for hydronium motion in ice is non-zero
8
,
9
,
10
. Here we use ‘soft-landing’
11
,
12
,
13
of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10
8
V m
−1
.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/18848</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion in solids ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Self-diffusion and ionic conduction in nonmetals ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Nature (London), 1999-04, Vol.398 (6726), p.405-407</ispartof><rights>Macmillan Magazines Ltd. 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</citedby><cites>FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/18848$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/18848$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1791328$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cowin, J. P.</creatorcontrib><creatorcontrib>Tsekouras, A. A.</creatorcontrib><creatorcontrib>Iedema, M. J.</creatorcontrib><creatorcontrib>Wu, K.</creatorcontrib><creatorcontrib>Ellison, G. B.</creatorcontrib><title>Immobility of protons in ice from 30 to 190 K</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The anomalously fast motion of hydronium ions (H
3
O
+
) in water is often attributed to the Grotthuss mechanism
1
,
2
, whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins
3
and in stratospheric ice particles
4
. Transport of hydronium ions in ice is thought to be closely related to its transport in water
1
,
2
. But whereas claims have been made that such tunnelling can persist even at 0 K in ice
5
,
6
,
7
, counter-claims suggest that the activation energy for hydronium motion in ice is non-zero
8
,
9
,
10
. Here we use ‘soft-landing’
11
,
12
,
13
of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10
8
V m
−1
.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-diffusion and ionic conduction in nonmetals</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqX0P3gAttA7O7GdEVV8VFRigdlyXAe5SuJiJ0M3Vv4mv4RAK1ViuuEePe_dS8gM4RaBqzkqlasTMsFciiwXSp6SCQBTGSguzslFShsAKFDmEzJftm2ofOP7HQ013cbQhy5R31FvHa1jaCkH2geKJXx_fj1fkrPaNMnNDnNK3h7uXxdP2erlcbm4W2WWS9FnpWIOlLQIwlVrpmwFWFkhOXMG7RpMUZRogQnOmLHgjKsKLrgBYbmyheNTcrP3jhd9DC71uvXJuqYxnQtD0kwCIgoYwes9aGNIKbpab6NvTdxpBP1bh_6rY-SuDkKTrGnqaDrr0xGWJXKmjrlp3HTvLupNGGI3vvrP9wOHNGhY</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Cowin, J. P.</creator><creator>Tsekouras, A. A.</creator><creator>Iedema, M. J.</creator><creator>Wu, K.</creator><creator>Ellison, G. B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19990401</creationdate><title>Immobility of protons in ice from 30 to 190 K</title><author>Cowin, J. P. ; Tsekouras, A. A. ; Iedema, M. J. ; Wu, K. ; Ellison, G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-982e087c106ebd28cb01bc6732ea1cd0a5591c026322ac0eaeb5363a06c38c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-diffusion and ionic conduction in nonmetals</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowin, J. P.</creatorcontrib><creatorcontrib>Tsekouras, A. A.</creatorcontrib><creatorcontrib>Iedema, M. J.</creatorcontrib><creatorcontrib>Wu, K.</creatorcontrib><creatorcontrib>Ellison, G. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowin, J. P.</au><au>Tsekouras, A. A.</au><au>Iedema, M. J.</au><au>Wu, K.</au><au>Ellison, G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobility of protons in ice from 30 to 190 K</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>398</volume><issue>6726</issue><spage>405</spage><epage>407</epage><pages>405-407</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The anomalously fast motion of hydronium ions (H
3
O
+
) in water is often attributed to the Grotthuss mechanism
1
,
2
, whereby protons tunnel from one water molecule to the next. This tunnelling is relevant to proton motion through water in restricted geometries, such as in ‘proton wires’ in proteins
3
and in stratospheric ice particles
4
. Transport of hydronium ions in ice is thought to be closely related to its transport in water
1
,
2
. But whereas claims have been made that such tunnelling can persist even at 0 K in ice
5
,
6
,
7
, counter-claims suggest that the activation energy for hydronium motion in ice is non-zero
8
,
9
,
10
. Here we use ‘soft-landing’
11
,
12
,
13
of hydronium ions on the surface of ice to show that the ions do not seem to move at all at temperatures below 190 K. This implies not only that hydronium motion is an activated process, but also that it does not occur at anything like the rate expected from the Grotthuss mechanism. We also observe the motion of an important kind of defect in ice's hydrogen-bonded structure (the D defect). Extrapolation of our measurements to 0 K indicates that the defect is still mobile at this temperature, in an electric field of 1.6 × 10
8
V m
−1
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/18848</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1999-04, Vol.398 (6726), p.405-407 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_27011160 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | Condensed matter: structure, mechanical and thermal properties Diffusion in solids Exact sciences and technology Humanities and Social Sciences letter multidisciplinary Physics Science Science (multidisciplinary) Self-diffusion and ionic conduction in nonmetals Transport properties of condensed matter (nonelectronic) |
title | Immobility of protons in ice from 30 to 190 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobility%20of%20protons%20in%20ice%20from%2030%20to%20190%E2%80%89K&rft.jtitle=Nature%20(London)&rft.au=Cowin,%20J.%20P.&rft.date=1999-04-01&rft.volume=398&rft.issue=6726&rft.spage=405&rft.epage=407&rft.pages=405-407&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/18848&rft_dat=%3Cproquest_cross%3E27011160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27011160&rft_id=info:pmid/&rfr_iscdi=true |