Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy

The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of -1, 0.1, and 0.2. The secondary dendr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1999-10, Vol.30 (10), p.2659-2666
Hauptverfasser: ZHANG, B, POIRIER, D. R, CHEN, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2666
container_issue 10
container_start_page 2659
container_title Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
container_volume 30
creator ZHANG, B
POIRIER, D. R
CHEN, W
description The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of -1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than 25-28 microns, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than 25-28 microns, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size. (Author)
doi_str_mv 10.1007/s11661-999-0306-3
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27008362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>45650216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b2c457652d47eb13b555ce5e552ae5f94e2e607f56c1bec87ad7c1e4d48ab3133</originalsourceid><addsrcrecordid>eNpdkU9vFDEMxSNEJcrCB-A2AtRbivN_51hVUCoVcSlco4zXs5syzZQkc9hvT0ZbCaknW9bPT35-jH0QcCkA3JcihLWC933PQYHl6hU7F0YrLnoNr1sPTnFjpXrD3pbyAACiV_ac_f4RMc-l5gXrksPU0TgS1tLNqTvE_YHjESfqxlDjfiGOOeCfLqZYY5s0JqbuShl7KTsMpca078I0zcd37GwMU6H3z3XDfn37en_9nd_9vLm9vrrjqKWufJCojbNG7rSjQajBGINkyBgZyIy9JkkW3GgsioFw68LOoSC909swKKHUhn066TYL0ReMlfCAc0rNg5fNpQQBjbo4UU95_rtQqf4xFqRpConmpXjpALaqPWfDPr4AH-Ylp-bAS6EcOKu2DRInaH1cyTT6pxwfQz56AX4Nw5_C8C0Mv4bh1zs_PwuHgmEac0gYy__FVb236h-bS4fx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213707638</pqid></control><display><type>article</type><title>Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy</title><source>SpringerNature Journals</source><creator>ZHANG, B ; POIRIER, D. R ; CHEN, W</creator><creatorcontrib>ZHANG, B ; POIRIER, D. R ; CHEN, W ; Univ. of Arizona, Tucson, AZ (US)</creatorcontrib><description>The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of -1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than 25-28 microns, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than 25-28 microns, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size. (Author)</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-999-0306-3</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>ALUMINIUM BASE ALLOYS ; Applied sciences ; CHEMICAL COMPOSITION ; CRACK PROPAGATION ; Cross-disciplinary physics: materials science; rheology ; DENDRITES ; Exact sciences and technology ; EXPERIMENTAL DATA ; FATIGUE ; Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure ; Fatigue, embrittlement, and fracture ; INCLUSIONS ; MATERIALS SCIENCE ; Metals. Metallurgy ; MICROSTRUCTURE ; Physics ; POROSITY ; SCANNING ELECTRON MICROSCOPY ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999-10, Vol.30 (10), p.2659-2666</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Oct 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b2c457652d47eb13b555ce5e552ae5f94e2e607f56c1bec87ad7c1e4d48ab3133</citedby><cites>FETCH-LOGICAL-c424t-b2c457652d47eb13b555ce5e552ae5f94e2e607f56c1bec87ad7c1e4d48ab3133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1213796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20002010$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ZHANG, B</creatorcontrib><creatorcontrib>POIRIER, D. R</creatorcontrib><creatorcontrib>CHEN, W</creatorcontrib><creatorcontrib>Univ. of Arizona, Tucson, AZ (US)</creatorcontrib><title>Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of -1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than 25-28 microns, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than 25-28 microns, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size. (Author)</description><subject>ALUMINIUM BASE ALLOYS</subject><subject>Applied sciences</subject><subject>CHEMICAL COMPOSITION</subject><subject>CRACK PROPAGATION</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DENDRITES</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FATIGUE</subject><subject>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</subject><subject>Fatigue, embrittlement, and fracture</subject><subject>INCLUSIONS</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>Physics</subject><subject>POROSITY</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU9vFDEMxSNEJcrCB-A2AtRbivN_51hVUCoVcSlco4zXs5syzZQkc9hvT0ZbCaknW9bPT35-jH0QcCkA3JcihLWC933PQYHl6hU7F0YrLnoNr1sPTnFjpXrD3pbyAACiV_ac_f4RMc-l5gXrksPU0TgS1tLNqTvE_YHjESfqxlDjfiGOOeCfLqZYY5s0JqbuShl7KTsMpca078I0zcd37GwMU6H3z3XDfn37en_9nd_9vLm9vrrjqKWufJCojbNG7rSjQajBGINkyBgZyIy9JkkW3GgsioFw68LOoSC909swKKHUhn066TYL0ReMlfCAc0rNg5fNpQQBjbo4UU95_rtQqf4xFqRpConmpXjpALaqPWfDPr4AH-Ylp-bAS6EcOKu2DRInaH1cyTT6pxwfQz56AX4Nw5_C8C0Mv4bh1zs_PwuHgmEac0gYy__FVb236h-bS4fx</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>ZHANG, B</creator><creator>POIRIER, D. R</creator><creator>CHEN, W</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19991001</creationdate><title>Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy</title><author>ZHANG, B ; POIRIER, D. R ; CHEN, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b2c457652d47eb13b555ce5e552ae5f94e2e607f56c1bec87ad7c1e4d48ab3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ALUMINIUM BASE ALLOYS</topic><topic>Applied sciences</topic><topic>CHEMICAL COMPOSITION</topic><topic>CRACK PROPAGATION</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DENDRITES</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FATIGUE</topic><topic>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</topic><topic>Fatigue, embrittlement, and fracture</topic><topic>INCLUSIONS</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>Physics</topic><topic>POROSITY</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, B</creatorcontrib><creatorcontrib>POIRIER, D. R</creatorcontrib><creatorcontrib>CHEN, W</creatorcontrib><creatorcontrib>Univ. of Arizona, Tucson, AZ (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, B</au><au>POIRIER, D. R</au><au>CHEN, W</au><aucorp>Univ. of Arizona, Tucson, AZ (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>30</volume><issue>10</issue><spage>2659</spage><epage>2666</epage><pages>2659-2666</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of -1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than 25-28 microns, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than 25-28 microns, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size. (Author)</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-999-0306-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999-10, Vol.30 (10), p.2659-2666
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_27008362
source SpringerNature Journals
subjects ALUMINIUM BASE ALLOYS
Applied sciences
CHEMICAL COMPOSITION
CRACK PROPAGATION
Cross-disciplinary physics: materials science
rheology
DENDRITES
Exact sciences and technology
EXPERIMENTAL DATA
FATIGUE
Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure
Fatigue, embrittlement, and fracture
INCLUSIONS
MATERIALS SCIENCE
Metals. Metallurgy
MICROSTRUCTURE
Physics
POROSITY
SCANNING ELECTRON MICROSCOPY
Treatment of materials and its effects on microstructure and properties
title Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20effects%20on%20high-cycle%20fatigue-crack%20initiation%20in%20A356.2%20casting%20alloy&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=ZHANG,%20B&rft.aucorp=Univ.%20of%20Arizona,%20Tucson,%20AZ%20(US)&rft.date=1999-10-01&rft.volume=30&rft.issue=10&rft.spage=2659&rft.epage=2666&rft.pages=2659-2666&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-999-0306-3&rft_dat=%3Cproquest_osti_%3E45650216%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213707638&rft_id=info:pmid/&rfr_iscdi=true