Microstructure-property relations in as-extruded ultrahigh-carbon steels
The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs i...
Gespeichert in:
Veröffentlicht in: | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1999-06, Vol.30 (6), p.1559-1568 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1568 |
---|---|
container_issue | 6 |
container_start_page | 1559 |
container_title | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science |
container_volume | 30 |
creator | LESUER, D. R SYN, C. K WHITTENBERGER, J. D SHERBY, O. D |
description | The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels. |
doi_str_mv | 10.1007/s11661-999-0093-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27004404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27004404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMoWKsP4G0V8RadbLLJ5ihFrVDxoueQzqY2Zbtbkyy0b29KC4KnmcP3D_98hFwzeGAA6jEyJiWjWmsKoDndnpARqwSnTAs4zTsoTitZ8nNyEeMKAJjmckSm7x5DH1MYMA3B0U3oNy6kXRFca5Pvu1j4rrCRum1mGtcUQ5uCXfrvJUUb5n1XxORcGy_J2cK20V0d55h8vTx_TqZ09vH6NnmaUeSVSLRpNNQsl9I1KomlU8o2ql5UDUgmq7kouawajqhqLSuQChE5q-Z1Kdm8KTkfk5vD3Vzam4g-OVxi33UOk5FKaVln5v7A5G9-BheTWfuIrm1t5_ohmlIBCAEig7f_wFU_hC73NyXjCmqVtY0JO0B7UTG4hdkEv7ZhZxiYvXxzkG-yfLOXb7Y5c3c8bCPadhFshz7-BUsmagH8FyNMg7U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213708707</pqid></control><display><type>article</type><title>Microstructure-property relations in as-extruded ultrahigh-carbon steels</title><source>SpringerLink Journals</source><creator>LESUER, D. R ; SYN, C. K ; WHITTENBERGER, J. D ; SHERBY, O. D</creator><creatorcontrib>LESUER, D. R ; SYN, C. K ; WHITTENBERGER, J. D ; SHERBY, O. D</creatorcontrib><description>The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-999-0093-x</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; AUSTENITE ; CARBIDES ; CARBON STEELS ; CHEMICAL COMPOSITION ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; EXTRUSION ; Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure ; Fatigue, embrittlement, and fracture ; MATERIALS SCIENCE ; Metals. Metallurgy ; MICROSTRUCTURE ; PEARLITE ; Physics ; TEMPERATURE DEPENDENCE ; TENSILE PROPERTIES ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999-06, Vol.30 (6), p.1559-1568</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</citedby><cites>FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1214840$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/677968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LESUER, D. R</creatorcontrib><creatorcontrib>SYN, C. K</creatorcontrib><creatorcontrib>WHITTENBERGER, J. D</creatorcontrib><creatorcontrib>SHERBY, O. D</creatorcontrib><title>Microstructure-property relations in as-extruded ultrahigh-carbon steels</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.</description><subject>Applied sciences</subject><subject>AUSTENITE</subject><subject>CARBIDES</subject><subject>CARBON STEELS</subject><subject>CHEMICAL COMPOSITION</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>EXTRUSION</subject><subject>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</subject><subject>Fatigue, embrittlement, and fracture</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>PEARLITE</subject><subject>Physics</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TENSILE PROPERTIES</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkMFKAzEQhoMoWKsP4G0V8RadbLLJ5ihFrVDxoueQzqY2Zbtbkyy0b29KC4KnmcP3D_98hFwzeGAA6jEyJiWjWmsKoDndnpARqwSnTAs4zTsoTitZ8nNyEeMKAJjmckSm7x5DH1MYMA3B0U3oNy6kXRFca5Pvu1j4rrCRum1mGtcUQ5uCXfrvJUUb5n1XxORcGy_J2cK20V0d55h8vTx_TqZ09vH6NnmaUeSVSLRpNNQsl9I1KomlU8o2ql5UDUgmq7kouawajqhqLSuQChE5q-Z1Kdm8KTkfk5vD3Vzam4g-OVxi33UOk5FKaVln5v7A5G9-BheTWfuIrm1t5_ohmlIBCAEig7f_wFU_hC73NyXjCmqVtY0JO0B7UTG4hdkEv7ZhZxiYvXxzkG-yfLOXb7Y5c3c8bCPadhFshz7-BUsmagH8FyNMg7U</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>LESUER, D. R</creator><creator>SYN, C. K</creator><creator>WHITTENBERGER, J. D</creator><creator>SHERBY, O. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>19990601</creationdate><title>Microstructure-property relations in as-extruded ultrahigh-carbon steels</title><author>LESUER, D. R ; SYN, C. K ; WHITTENBERGER, J. D ; SHERBY, O. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>AUSTENITE</topic><topic>CARBIDES</topic><topic>CARBON STEELS</topic><topic>CHEMICAL COMPOSITION</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>EXTRUSION</topic><topic>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</topic><topic>Fatigue, embrittlement, and fracture</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>PEARLITE</topic><topic>Physics</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TENSILE PROPERTIES</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LESUER, D. R</creatorcontrib><creatorcontrib>SYN, C. K</creatorcontrib><creatorcontrib>WHITTENBERGER, J. D</creatorcontrib><creatorcontrib>SHERBY, O. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LESUER, D. R</au><au>SYN, C. K</au><au>WHITTENBERGER, J. D</au><au>SHERBY, O. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure-property relations in as-extruded ultrahigh-carbon steels</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>30</volume><issue>6</issue><spage>1559</spage><epage>1568</epage><pages>1559-1568</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-999-0093-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999-06, Vol.30 (6), p.1559-1568 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_27004404 |
source | SpringerLink Journals |
subjects | Applied sciences AUSTENITE CARBIDES CARBON STEELS CHEMICAL COMPOSITION Cross-disciplinary physics: materials science rheology Exact sciences and technology EXTRUSION Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure Fatigue, embrittlement, and fracture MATERIALS SCIENCE Metals. Metallurgy MICROSTRUCTURE PEARLITE Physics TEMPERATURE DEPENDENCE TENSILE PROPERTIES Treatment of materials and its effects on microstructure and properties |
title | Microstructure-property relations in as-extruded ultrahigh-carbon steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure-property%20relations%20in%20as-extruded%20ultrahigh-carbon%20steels&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=LESUER,%20D.%20R&rft.date=1999-06-01&rft.volume=30&rft.issue=6&rft.spage=1559&rft.epage=1568&rft.pages=1559-1568&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-999-0093-x&rft_dat=%3Cproquest_osti_%3E27004404%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213708707&rft_id=info:pmid/&rfr_iscdi=true |