Microstructure-property relations in as-extruded ultrahigh-carbon steels

The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1999-06, Vol.30 (6), p.1559-1568
Hauptverfasser: LESUER, D. R, SYN, C. K, WHITTENBERGER, J. D, SHERBY, O. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1568
container_issue 6
container_start_page 1559
container_title Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
container_volume 30
creator LESUER, D. R
SYN, C. K
WHITTENBERGER, J. D
SHERBY, O. D
description The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.
doi_str_mv 10.1007/s11661-999-0093-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27004404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27004404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMoWKsP4G0V8RadbLLJ5ihFrVDxoueQzqY2Zbtbkyy0b29KC4KnmcP3D_98hFwzeGAA6jEyJiWjWmsKoDndnpARqwSnTAs4zTsoTitZ8nNyEeMKAJjmckSm7x5DH1MYMA3B0U3oNy6kXRFca5Pvu1j4rrCRum1mGtcUQ5uCXfrvJUUb5n1XxORcGy_J2cK20V0d55h8vTx_TqZ09vH6NnmaUeSVSLRpNNQsl9I1KomlU8o2ql5UDUgmq7kouawajqhqLSuQChE5q-Z1Kdm8KTkfk5vD3Vzam4g-OVxi33UOk5FKaVln5v7A5G9-BheTWfuIrm1t5_ohmlIBCAEig7f_wFU_hC73NyXjCmqVtY0JO0B7UTG4hdkEv7ZhZxiYvXxzkG-yfLOXb7Y5c3c8bCPadhFshz7-BUsmagH8FyNMg7U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213708707</pqid></control><display><type>article</type><title>Microstructure-property relations in as-extruded ultrahigh-carbon steels</title><source>SpringerLink Journals</source><creator>LESUER, D. R ; SYN, C. K ; WHITTENBERGER, J. D ; SHERBY, O. D</creator><creatorcontrib>LESUER, D. R ; SYN, C. K ; WHITTENBERGER, J. D ; SHERBY, O. D</creatorcontrib><description>The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-999-0093-x</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; AUSTENITE ; CARBIDES ; CARBON STEELS ; CHEMICAL COMPOSITION ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; EXTRUSION ; Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure ; Fatigue, embrittlement, and fracture ; MATERIALS SCIENCE ; Metals. Metallurgy ; MICROSTRUCTURE ; PEARLITE ; Physics ; TEMPERATURE DEPENDENCE ; TENSILE PROPERTIES ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999-06, Vol.30 (6), p.1559-1568</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</citedby><cites>FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1214840$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/677968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LESUER, D. R</creatorcontrib><creatorcontrib>SYN, C. K</creatorcontrib><creatorcontrib>WHITTENBERGER, J. D</creatorcontrib><creatorcontrib>SHERBY, O. D</creatorcontrib><title>Microstructure-property relations in as-extruded ultrahigh-carbon steels</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.</description><subject>Applied sciences</subject><subject>AUSTENITE</subject><subject>CARBIDES</subject><subject>CARBON STEELS</subject><subject>CHEMICAL COMPOSITION</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>EXTRUSION</subject><subject>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</subject><subject>Fatigue, embrittlement, and fracture</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>PEARLITE</subject><subject>Physics</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TENSILE PROPERTIES</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkMFKAzEQhoMoWKsP4G0V8RadbLLJ5ihFrVDxoueQzqY2Zbtbkyy0b29KC4KnmcP3D_98hFwzeGAA6jEyJiWjWmsKoDndnpARqwSnTAs4zTsoTitZ8nNyEeMKAJjmckSm7x5DH1MYMA3B0U3oNy6kXRFca5Pvu1j4rrCRum1mGtcUQ5uCXfrvJUUb5n1XxORcGy_J2cK20V0d55h8vTx_TqZ09vH6NnmaUeSVSLRpNNQsl9I1KomlU8o2ql5UDUgmq7kouawajqhqLSuQChE5q-Z1Kdm8KTkfk5vD3Vzam4g-OVxi33UOk5FKaVln5v7A5G9-BheTWfuIrm1t5_ohmlIBCAEig7f_wFU_hC73NyXjCmqVtY0JO0B7UTG4hdkEv7ZhZxiYvXxzkG-yfLOXb7Y5c3c8bCPadhFshz7-BUsmagH8FyNMg7U</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>LESUER, D. R</creator><creator>SYN, C. K</creator><creator>WHITTENBERGER, J. D</creator><creator>SHERBY, O. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>19990601</creationdate><title>Microstructure-property relations in as-extruded ultrahigh-carbon steels</title><author>LESUER, D. R ; SYN, C. K ; WHITTENBERGER, J. D ; SHERBY, O. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-dd908119498c76c2e77ad78f5d06165b42365d3cc78965067ccc315b8261bd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>AUSTENITE</topic><topic>CARBIDES</topic><topic>CARBON STEELS</topic><topic>CHEMICAL COMPOSITION</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>EXTRUSION</topic><topic>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</topic><topic>Fatigue, embrittlement, and fracture</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>PEARLITE</topic><topic>Physics</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TENSILE PROPERTIES</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LESUER, D. R</creatorcontrib><creatorcontrib>SYN, C. K</creatorcontrib><creatorcontrib>WHITTENBERGER, J. D</creatorcontrib><creatorcontrib>SHERBY, O. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LESUER, D. R</au><au>SYN, C. K</au><au>WHITTENBERGER, J. D</au><au>SHERBY, O. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure-property relations in as-extruded ultrahigh-carbon steels</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>30</volume><issue>6</issue><spage>1559</spage><epage>1568</epage><pages>1559-1568</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The microstructure and mechanical properties of as-extruded ultrahigh-carbon steels (UHCSs) are described. Extrusion ratios of 16:1 reduction were used at extrusion temperatures of 900 deg C, 1025 deg C, and 1150 deg C. Air cooling followed the extrusion process. The compositions of the four UHCSs investigated ranged from 1.2-1.8% C and contained either aluminum or silicon and/or chormium as the principal alloying elements. The as-extruded microstructures were predominantly pearlitic. Detailed examination of the microstructures allowed determination of the composition and extrusion temperature at which grain-boundary carbide networks and graphite can be avoided. It is shown that the yield strength of the as-extruded bars, for a given UHCS alloy composition, correlates well with the interlamellar spacing, independent of the extrusion temperature. Ultimate tensile strengths ranged from 1000-1690 MPa, and elongations to failure ranged from 3-12.5%. The present results indicate that single-step mechanical working of UHCSs to achieve fully pearlitic structures, with no postworking heat treatment, can lead to a new class of ultrahigh-strength steels.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-999-0093-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1999-06, Vol.30 (6), p.1559-1568
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_27004404
source SpringerLink Journals
subjects Applied sciences
AUSTENITE
CARBIDES
CARBON STEELS
CHEMICAL COMPOSITION
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
EXTRUSION
Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure
Fatigue, embrittlement, and fracture
MATERIALS SCIENCE
Metals. Metallurgy
MICROSTRUCTURE
PEARLITE
Physics
TEMPERATURE DEPENDENCE
TENSILE PROPERTIES
Treatment of materials and its effects on microstructure and properties
title Microstructure-property relations in as-extruded ultrahigh-carbon steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure-property%20relations%20in%20as-extruded%20ultrahigh-carbon%20steels&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=LESUER,%20D.%20R&rft.date=1999-06-01&rft.volume=30&rft.issue=6&rft.spage=1559&rft.epage=1568&rft.pages=1559-1568&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-999-0093-x&rft_dat=%3Cproquest_osti_%3E27004404%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213708707&rft_id=info:pmid/&rfr_iscdi=true