Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems

This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based articulation. We develop an on-line learning scheme—the so-called mixture of recurrent neural net (RNN) experts—in which a set of RNN modules become self-organized as ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1999-10, Vol.12 (7), p.1131-1141
Hauptverfasser: Tani, J., Nolfi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1141
container_issue 7
container_start_page 1131
container_title Neural networks
container_volume 12
creator Tani, J.
Nolfi, S.
description This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based articulation. We develop an on-line learning scheme—the so-called mixture of recurrent neural net (RNN) experts—in which a set of RNN modules become self-organized as experts on multiple levels, in order to account for the different categories of sensory-motor flow which the robot experiences. Autonomous switching of activated modules in the lower level actually represents the articulation of the sensory-motor flow. In the meantime, a set of RNNs in the higher level competes to learn the sequences of module switching in the lower level, by which articulation at a further, more abstract level can be achieved. The proposed scheme was examined through simulation experiments involving the navigation learning problem. Our dynamical system analysis clarified the mechanism of the articulation. The possible correspondence between the articulation mechanism and the attention switching mechanism in thalamo-cortical loops is also discussed.
doi_str_mv 10.1016/S0893-6080(99)00060-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26999051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360809900060X</els_id><sourcerecordid>528029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-138baecd33e3b35c72727a4a78992239a19b9fc061825674419613fc4e0aa2b33</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgei28BNAPqH2EPBH4ni4IFTxJa3EAZB6sybOhDVK4sX2Fu2_J9td4Eblw1yembHmZeyZFC-lkObVF2FBV0ZYcQlwJYQworp5wFbStlCp1qqHbPWXnLHznH8ckK31Y3YmlTHK1LBi05owzWH-zkvkW0qewi3xsiH-K6ax55g5phL8bsRC_WuOM8ftNkX0Gz7ExDeBEia_CR5HPv6ZFWaeac4x7asploXlfS405Sfs0YBjpqenesG-vX_39fpjtf784dP123Xla9WUSmrbIflea9Kdbnyrloc1thZAKQ0ooYPBCyOtakxb1xKM1IOvSSCqTusL9uI4d_npzx3l4qaQPY0jzhR32SkDAKKR90NZN1LpA7z8L5S2AQ1WN2KhzZH6FHNONLhtChOmvZPCHbJzd9m5QzAOwN1l526WvuenFbtuov5f1ymsBbw5AlpOd7sc3mUfaPbUh0S-uD6Ge1b8Bq0zqXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859398350</pqid></control><display><type>article</type><title>Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tani, J. ; Nolfi, S.</creator><creatorcontrib>Tani, J. ; Nolfi, S.</creatorcontrib><description>This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based articulation. We develop an on-line learning scheme—the so-called mixture of recurrent neural net (RNN) experts—in which a set of RNN modules become self-organized as experts on multiple levels, in order to account for the different categories of sensory-motor flow which the robot experiences. Autonomous switching of activated modules in the lower level actually represents the articulation of the sensory-motor flow. In the meantime, a set of RNNs in the higher level competes to learn the sequences of module switching in the lower level, by which articulation at a further, more abstract level can be achieved. The proposed scheme was examined through simulation experiments involving the navigation learning problem. Our dynamical system analysis clarified the mechanism of the articulation. The possible correspondence between the articulation mechanism and the attention switching mechanism in thalamo-cortical loops is also discussed.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(99)00060-X</identifier><identifier>PMID: 12662649</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Articulation ; Attentional switch ; Computer simulation ; Expert systems ; Hierarchical learning ; Hierarchical systems ; Mixture of experts ; Recurrent neural networks ; Sensory perception ; Sensory-motor systems</subject><ispartof>Neural networks, 1999-10, Vol.12 (7), p.1131-1141</ispartof><rights>1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-138baecd33e3b35c72727a4a78992239a19b9fc061825674419613fc4e0aa2b33</citedby><cites>FETCH-LOGICAL-c425t-138baecd33e3b35c72727a4a78992239a19b9fc061825674419613fc4e0aa2b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089360809900060X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tani, J.</creatorcontrib><creatorcontrib>Nolfi, S.</creatorcontrib><title>Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based articulation. We develop an on-line learning scheme—the so-called mixture of recurrent neural net (RNN) experts—in which a set of RNN modules become self-organized as experts on multiple levels, in order to account for the different categories of sensory-motor flow which the robot experiences. Autonomous switching of activated modules in the lower level actually represents the articulation of the sensory-motor flow. In the meantime, a set of RNNs in the higher level competes to learn the sequences of module switching in the lower level, by which articulation at a further, more abstract level can be achieved. The proposed scheme was examined through simulation experiments involving the navigation learning problem. Our dynamical system analysis clarified the mechanism of the articulation. The possible correspondence between the articulation mechanism and the attention switching mechanism in thalamo-cortical loops is also discussed.</description><subject>Algorithms</subject><subject>Articulation</subject><subject>Attentional switch</subject><subject>Computer simulation</subject><subject>Expert systems</subject><subject>Hierarchical learning</subject><subject>Hierarchical systems</subject><subject>Mixture of experts</subject><subject>Recurrent neural networks</subject><subject>Sensory perception</subject><subject>Sensory-motor systems</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALgei28BNAPqH2EPBH4ni4IFTxJa3EAZB6sybOhDVK4sX2Fu2_J9td4Eblw1yembHmZeyZFC-lkObVF2FBV0ZYcQlwJYQworp5wFbStlCp1qqHbPWXnLHznH8ckK31Y3YmlTHK1LBi05owzWH-zkvkW0qewi3xsiH-K6ax55g5phL8bsRC_WuOM8ftNkX0Gz7ExDeBEia_CR5HPv6ZFWaeac4x7asploXlfS405Sfs0YBjpqenesG-vX_39fpjtf784dP123Xla9WUSmrbIflea9Kdbnyrloc1thZAKQ0ooYPBCyOtakxb1xKM1IOvSSCqTusL9uI4d_npzx3l4qaQPY0jzhR32SkDAKKR90NZN1LpA7z8L5S2AQ1WN2KhzZH6FHNONLhtChOmvZPCHbJzd9m5QzAOwN1l526WvuenFbtuov5f1ymsBbw5AlpOd7sc3mUfaPbUh0S-uD6Ge1b8Bq0zqXo</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Tani, J.</creator><creator>Nolfi, S.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991001</creationdate><title>Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems</title><author>Tani, J. ; Nolfi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-138baecd33e3b35c72727a4a78992239a19b9fc061825674419613fc4e0aa2b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Articulation</topic><topic>Attentional switch</topic><topic>Computer simulation</topic><topic>Expert systems</topic><topic>Hierarchical learning</topic><topic>Hierarchical systems</topic><topic>Mixture of experts</topic><topic>Recurrent neural networks</topic><topic>Sensory perception</topic><topic>Sensory-motor systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tani, J.</creatorcontrib><creatorcontrib>Nolfi, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tani, J.</au><au>Nolfi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>12</volume><issue>7</issue><spage>1131</spage><epage>1141</epage><pages>1131-1141</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based articulation. We develop an on-line learning scheme—the so-called mixture of recurrent neural net (RNN) experts—in which a set of RNN modules become self-organized as experts on multiple levels, in order to account for the different categories of sensory-motor flow which the robot experiences. Autonomous switching of activated modules in the lower level actually represents the articulation of the sensory-motor flow. In the meantime, a set of RNNs in the higher level competes to learn the sequences of module switching in the lower level, by which articulation at a further, more abstract level can be achieved. The proposed scheme was examined through simulation experiments involving the navigation learning problem. Our dynamical system analysis clarified the mechanism of the articulation. The possible correspondence between the articulation mechanism and the attention switching mechanism in thalamo-cortical loops is also discussed.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>12662649</pmid><doi>10.1016/S0893-6080(99)00060-X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1999-10, Vol.12 (7), p.1131-1141
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_26999051
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Articulation
Attentional switch
Computer simulation
Expert systems
Hierarchical learning
Hierarchical systems
Mixture of experts
Recurrent neural networks
Sensory perception
Sensory-motor systems
title Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20perceive%20the%20world%20as%20articulated:%20an%20approach%20for%20hierarchical%20learning%20in%20sensory-motor%20systems&rft.jtitle=Neural%20networks&rft.au=Tani,%20J.&rft.date=1999-10-01&rft.volume=12&rft.issue=7&rft.spage=1131&rft.epage=1141&rft.pages=1131-1141&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(99)00060-X&rft_dat=%3Cproquest_cross%3E528029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859398350&rft_id=info:pmid/12662649&rft_els_id=S089360809900060X&rfr_iscdi=true