Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease

BACKGROUNDValvular heart disease is an important contributor to cardiovascular morbidity and mortality and remains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVES...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American College of Cardiology 2022-08, Vol.80 (6), p.613-626
Hauptverfasser: Elias, Pierre, Poterucha, Timothy J., Rajaram, Vijay, Moller, Luca Matos, Rodriguez, Victor, Bhave, Shreyas, Hahn, Rebecca T., Tison, Geoffrey, Abreau, Sean A., Barrios, Joshua, Torres, Jessica Nicole, Hughes, J. Weston, Perez, Marco V., Finer, Joshua, Kodali, Susheel, Khalique, Omar, Hamid, Nadira, Schwartz, Allan, Homma, Shunichi, Kumaraiah, Deepa, Cohen, David J., Maurer, Mathew S., Einstein, Andrew J., Nazif, Tamim, Leon, Martin B., Perotte, Adler J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 6
container_start_page 613
container_title Journal of the American College of Cardiology
container_volume 80
creator Elias, Pierre
Poterucha, Timothy J.
Rajaram, Vijay
Moller, Luca Matos
Rodriguez, Victor
Bhave, Shreyas
Hahn, Rebecca T.
Tison, Geoffrey
Abreau, Sean A.
Barrios, Joshua
Torres, Jessica Nicole
Hughes, J. Weston
Perez, Marco V.
Finer, Joshua
Kodali, Susheel
Khalique, Omar
Hamid, Nadira
Schwartz, Allan
Homma, Shunichi
Kumaraiah, Deepa
Cohen, David J.
Maurer, Mathew S.
Einstein, Andrew J.
Nazif, Tamim
Leon, Martin B.
Perotte, Adler J.
description BACKGROUNDValvular heart disease is an important contributor to cardiovascular morbidity and mortality and remains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVESThis study aimed to develop ECG deep learning algorithms to identify moderate or severe AS, AR, and MR alone and in combination. METHODSA total of 77,163 patients undergoing ECG within 1 year before echocardiography from 2005-2021 were identified and split into train (n = 43,165), validation (n = 12,950), and test sets (n = 21,048; 7.8% with any of AS, AR, or MR). Model performance was assessed using area under the receiver-operating characteristic (AU-ROC) and precision-recall curves. Outside validation was conducted on an independent data set. Test accuracy was modeled using different disease prevalence levels to simulate screening efficacy using the deep learning model. RESULTSThe deep learning algorithm model accuracy was as follows: AS (AU-ROC: 0.88), AR (AU-ROC: 0.77), MR (AU-ROC: 0.83), and any of AS, AR, or MR (AU-ROC: 0.84; sensitivity 78%, specificity 73%) with similar accuracy in external validation. In screening program modeling, test characteristics were dependent on underlying prevalence and selected sensitivity levels. At a prevalence of 7.8%, the positive and negative predictive values were 20% and 97.6%, respectively. CONCLUSIONSDeep learning analysis of the ECG can accurately detect AS, AR, and MR in this multicenter cohort and may serve as the basis for the development of a valvular heart disease screening program.
doi_str_mv 10.1016/j.jacc.2022.05.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2699708256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699708256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4e6606df9d3f4b17077837d3c85b0a5b624932b21da3311729ada808fa2335e03</originalsourceid><addsrcrecordid>eNotkL1OwzAYRS0EEqXwAkweWRI-27Udj1VbKFIlBn5GLMexi6M0LnaK1LcnVZnucu4ZDkL3BEoCRDy2ZWusLSlQWgIvgaoLNCGcVwXjSl6iCUjGCwJKXqObnFsAEBVRE_S1dG6PN86kPvRbvOqcHVK0JjUhbpPZfweL573pjjlk7GPCSzeMSIg9jn78-aF4C41r8Kfpfg-dSXg9uga8DNmZ7G7RlTdddnf_O0UfT6v3xbrYvD6_LOabwjIFQzFzQoBovGqYn9VEgpQVkw2zFa_B8FrQmWK0pqQxjBEiqTKNqaDyhjLGHbApejh79yn-HFwe9C5k67rO9C4esqZCKQkV5WJE6Rm1KeacnNf7FHYmHTUBfYqpW32KqU8xNXA9xmR_soNosQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699708256</pqid></control><display><type>article</type><title>Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Elias, Pierre ; Poterucha, Timothy J. ; Rajaram, Vijay ; Moller, Luca Matos ; Rodriguez, Victor ; Bhave, Shreyas ; Hahn, Rebecca T. ; Tison, Geoffrey ; Abreau, Sean A. ; Barrios, Joshua ; Torres, Jessica Nicole ; Hughes, J. Weston ; Perez, Marco V. ; Finer, Joshua ; Kodali, Susheel ; Khalique, Omar ; Hamid, Nadira ; Schwartz, Allan ; Homma, Shunichi ; Kumaraiah, Deepa ; Cohen, David J. ; Maurer, Mathew S. ; Einstein, Andrew J. ; Nazif, Tamim ; Leon, Martin B. ; Perotte, Adler J.</creator><creatorcontrib>Elias, Pierre ; Poterucha, Timothy J. ; Rajaram, Vijay ; Moller, Luca Matos ; Rodriguez, Victor ; Bhave, Shreyas ; Hahn, Rebecca T. ; Tison, Geoffrey ; Abreau, Sean A. ; Barrios, Joshua ; Torres, Jessica Nicole ; Hughes, J. Weston ; Perez, Marco V. ; Finer, Joshua ; Kodali, Susheel ; Khalique, Omar ; Hamid, Nadira ; Schwartz, Allan ; Homma, Shunichi ; Kumaraiah, Deepa ; Cohen, David J. ; Maurer, Mathew S. ; Einstein, Andrew J. ; Nazif, Tamim ; Leon, Martin B. ; Perotte, Adler J.</creatorcontrib><description>BACKGROUNDValvular heart disease is an important contributor to cardiovascular morbidity and mortality and remains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVESThis study aimed to develop ECG deep learning algorithms to identify moderate or severe AS, AR, and MR alone and in combination. METHODSA total of 77,163 patients undergoing ECG within 1 year before echocardiography from 2005-2021 were identified and split into train (n = 43,165), validation (n = 12,950), and test sets (n = 21,048; 7.8% with any of AS, AR, or MR). Model performance was assessed using area under the receiver-operating characteristic (AU-ROC) and precision-recall curves. Outside validation was conducted on an independent data set. Test accuracy was modeled using different disease prevalence levels to simulate screening efficacy using the deep learning model. RESULTSThe deep learning algorithm model accuracy was as follows: AS (AU-ROC: 0.88), AR (AU-ROC: 0.77), MR (AU-ROC: 0.83), and any of AS, AR, or MR (AU-ROC: 0.84; sensitivity 78%, specificity 73%) with similar accuracy in external validation. In screening program modeling, test characteristics were dependent on underlying prevalence and selected sensitivity levels. At a prevalence of 7.8%, the positive and negative predictive values were 20% and 97.6%, respectively. CONCLUSIONSDeep learning analysis of the ECG can accurately detect AS, AR, and MR in this multicenter cohort and may serve as the basis for the development of a valvular heart disease screening program.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2022.05.029</identifier><language>eng</language><ispartof>Journal of the American College of Cardiology, 2022-08, Vol.80 (6), p.613-626</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4e6606df9d3f4b17077837d3c85b0a5b624932b21da3311729ada808fa2335e03</citedby><cites>FETCH-LOGICAL-c390t-4e6606df9d3f4b17077837d3c85b0a5b624932b21da3311729ada808fa2335e03</cites><orcidid>0000-0002-0310-3326 ; 0000-0002-5496-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Elias, Pierre</creatorcontrib><creatorcontrib>Poterucha, Timothy J.</creatorcontrib><creatorcontrib>Rajaram, Vijay</creatorcontrib><creatorcontrib>Moller, Luca Matos</creatorcontrib><creatorcontrib>Rodriguez, Victor</creatorcontrib><creatorcontrib>Bhave, Shreyas</creatorcontrib><creatorcontrib>Hahn, Rebecca T.</creatorcontrib><creatorcontrib>Tison, Geoffrey</creatorcontrib><creatorcontrib>Abreau, Sean A.</creatorcontrib><creatorcontrib>Barrios, Joshua</creatorcontrib><creatorcontrib>Torres, Jessica Nicole</creatorcontrib><creatorcontrib>Hughes, J. Weston</creatorcontrib><creatorcontrib>Perez, Marco V.</creatorcontrib><creatorcontrib>Finer, Joshua</creatorcontrib><creatorcontrib>Kodali, Susheel</creatorcontrib><creatorcontrib>Khalique, Omar</creatorcontrib><creatorcontrib>Hamid, Nadira</creatorcontrib><creatorcontrib>Schwartz, Allan</creatorcontrib><creatorcontrib>Homma, Shunichi</creatorcontrib><creatorcontrib>Kumaraiah, Deepa</creatorcontrib><creatorcontrib>Cohen, David J.</creatorcontrib><creatorcontrib>Maurer, Mathew S.</creatorcontrib><creatorcontrib>Einstein, Andrew J.</creatorcontrib><creatorcontrib>Nazif, Tamim</creatorcontrib><creatorcontrib>Leon, Martin B.</creatorcontrib><creatorcontrib>Perotte, Adler J.</creatorcontrib><title>Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease</title><title>Journal of the American College of Cardiology</title><description>BACKGROUNDValvular heart disease is an important contributor to cardiovascular morbidity and mortality and remains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVESThis study aimed to develop ECG deep learning algorithms to identify moderate or severe AS, AR, and MR alone and in combination. METHODSA total of 77,163 patients undergoing ECG within 1 year before echocardiography from 2005-2021 were identified and split into train (n = 43,165), validation (n = 12,950), and test sets (n = 21,048; 7.8% with any of AS, AR, or MR). Model performance was assessed using area under the receiver-operating characteristic (AU-ROC) and precision-recall curves. Outside validation was conducted on an independent data set. Test accuracy was modeled using different disease prevalence levels to simulate screening efficacy using the deep learning model. RESULTSThe deep learning algorithm model accuracy was as follows: AS (AU-ROC: 0.88), AR (AU-ROC: 0.77), MR (AU-ROC: 0.83), and any of AS, AR, or MR (AU-ROC: 0.84; sensitivity 78%, specificity 73%) with similar accuracy in external validation. In screening program modeling, test characteristics were dependent on underlying prevalence and selected sensitivity levels. At a prevalence of 7.8%, the positive and negative predictive values were 20% and 97.6%, respectively. CONCLUSIONSDeep learning analysis of the ECG can accurately detect AS, AR, and MR in this multicenter cohort and may serve as the basis for the development of a valvular heart disease screening program.</description><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAYRS0EEqXwAkweWRI-27Udj1VbKFIlBn5GLMexi6M0LnaK1LcnVZnucu4ZDkL3BEoCRDy2ZWusLSlQWgIvgaoLNCGcVwXjSl6iCUjGCwJKXqObnFsAEBVRE_S1dG6PN86kPvRbvOqcHVK0JjUhbpPZfweL573pjjlk7GPCSzeMSIg9jn78-aF4C41r8Kfpfg-dSXg9uga8DNmZ7G7RlTdddnf_O0UfT6v3xbrYvD6_LOabwjIFQzFzQoBovGqYn9VEgpQVkw2zFa_B8FrQmWK0pqQxjBEiqTKNqaDyhjLGHbApejh79yn-HFwe9C5k67rO9C4esqZCKQkV5WJE6Rm1KeacnNf7FHYmHTUBfYqpW32KqU8xNXA9xmR_soNosQ</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Elias, Pierre</creator><creator>Poterucha, Timothy J.</creator><creator>Rajaram, Vijay</creator><creator>Moller, Luca Matos</creator><creator>Rodriguez, Victor</creator><creator>Bhave, Shreyas</creator><creator>Hahn, Rebecca T.</creator><creator>Tison, Geoffrey</creator><creator>Abreau, Sean A.</creator><creator>Barrios, Joshua</creator><creator>Torres, Jessica Nicole</creator><creator>Hughes, J. Weston</creator><creator>Perez, Marco V.</creator><creator>Finer, Joshua</creator><creator>Kodali, Susheel</creator><creator>Khalique, Omar</creator><creator>Hamid, Nadira</creator><creator>Schwartz, Allan</creator><creator>Homma, Shunichi</creator><creator>Kumaraiah, Deepa</creator><creator>Cohen, David J.</creator><creator>Maurer, Mathew S.</creator><creator>Einstein, Andrew J.</creator><creator>Nazif, Tamim</creator><creator>Leon, Martin B.</creator><creator>Perotte, Adler J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0310-3326</orcidid><orcidid>https://orcid.org/0000-0002-5496-7431</orcidid></search><sort><creationdate>20220809</creationdate><title>Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease</title><author>Elias, Pierre ; Poterucha, Timothy J. ; Rajaram, Vijay ; Moller, Luca Matos ; Rodriguez, Victor ; Bhave, Shreyas ; Hahn, Rebecca T. ; Tison, Geoffrey ; Abreau, Sean A. ; Barrios, Joshua ; Torres, Jessica Nicole ; Hughes, J. Weston ; Perez, Marco V. ; Finer, Joshua ; Kodali, Susheel ; Khalique, Omar ; Hamid, Nadira ; Schwartz, Allan ; Homma, Shunichi ; Kumaraiah, Deepa ; Cohen, David J. ; Maurer, Mathew S. ; Einstein, Andrew J. ; Nazif, Tamim ; Leon, Martin B. ; Perotte, Adler J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4e6606df9d3f4b17077837d3c85b0a5b624932b21da3311729ada808fa2335e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elias, Pierre</creatorcontrib><creatorcontrib>Poterucha, Timothy J.</creatorcontrib><creatorcontrib>Rajaram, Vijay</creatorcontrib><creatorcontrib>Moller, Luca Matos</creatorcontrib><creatorcontrib>Rodriguez, Victor</creatorcontrib><creatorcontrib>Bhave, Shreyas</creatorcontrib><creatorcontrib>Hahn, Rebecca T.</creatorcontrib><creatorcontrib>Tison, Geoffrey</creatorcontrib><creatorcontrib>Abreau, Sean A.</creatorcontrib><creatorcontrib>Barrios, Joshua</creatorcontrib><creatorcontrib>Torres, Jessica Nicole</creatorcontrib><creatorcontrib>Hughes, J. Weston</creatorcontrib><creatorcontrib>Perez, Marco V.</creatorcontrib><creatorcontrib>Finer, Joshua</creatorcontrib><creatorcontrib>Kodali, Susheel</creatorcontrib><creatorcontrib>Khalique, Omar</creatorcontrib><creatorcontrib>Hamid, Nadira</creatorcontrib><creatorcontrib>Schwartz, Allan</creatorcontrib><creatorcontrib>Homma, Shunichi</creatorcontrib><creatorcontrib>Kumaraiah, Deepa</creatorcontrib><creatorcontrib>Cohen, David J.</creatorcontrib><creatorcontrib>Maurer, Mathew S.</creatorcontrib><creatorcontrib>Einstein, Andrew J.</creatorcontrib><creatorcontrib>Nazif, Tamim</creatorcontrib><creatorcontrib>Leon, Martin B.</creatorcontrib><creatorcontrib>Perotte, Adler J.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias, Pierre</au><au>Poterucha, Timothy J.</au><au>Rajaram, Vijay</au><au>Moller, Luca Matos</au><au>Rodriguez, Victor</au><au>Bhave, Shreyas</au><au>Hahn, Rebecca T.</au><au>Tison, Geoffrey</au><au>Abreau, Sean A.</au><au>Barrios, Joshua</au><au>Torres, Jessica Nicole</au><au>Hughes, J. Weston</au><au>Perez, Marco V.</au><au>Finer, Joshua</au><au>Kodali, Susheel</au><au>Khalique, Omar</au><au>Hamid, Nadira</au><au>Schwartz, Allan</au><au>Homma, Shunichi</au><au>Kumaraiah, Deepa</au><au>Cohen, David J.</au><au>Maurer, Mathew S.</au><au>Einstein, Andrew J.</au><au>Nazif, Tamim</au><au>Leon, Martin B.</au><au>Perotte, Adler J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease</atitle><jtitle>Journal of the American College of Cardiology</jtitle><date>2022-08-09</date><risdate>2022</risdate><volume>80</volume><issue>6</issue><spage>613</spage><epage>626</epage><pages>613-626</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>BACKGROUNDValvular heart disease is an important contributor to cardiovascular morbidity and mortality and remains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVESThis study aimed to develop ECG deep learning algorithms to identify moderate or severe AS, AR, and MR alone and in combination. METHODSA total of 77,163 patients undergoing ECG within 1 year before echocardiography from 2005-2021 were identified and split into train (n = 43,165), validation (n = 12,950), and test sets (n = 21,048; 7.8% with any of AS, AR, or MR). Model performance was assessed using area under the receiver-operating characteristic (AU-ROC) and precision-recall curves. Outside validation was conducted on an independent data set. Test accuracy was modeled using different disease prevalence levels to simulate screening efficacy using the deep learning model. RESULTSThe deep learning algorithm model accuracy was as follows: AS (AU-ROC: 0.88), AR (AU-ROC: 0.77), MR (AU-ROC: 0.83), and any of AS, AR, or MR (AU-ROC: 0.84; sensitivity 78%, specificity 73%) with similar accuracy in external validation. In screening program modeling, test characteristics were dependent on underlying prevalence and selected sensitivity levels. At a prevalence of 7.8%, the positive and negative predictive values were 20% and 97.6%, respectively. CONCLUSIONSDeep learning analysis of the ECG can accurately detect AS, AR, and MR in this multicenter cohort and may serve as the basis for the development of a valvular heart disease screening program.</abstract><doi>10.1016/j.jacc.2022.05.029</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0310-3326</orcidid><orcidid>https://orcid.org/0000-0002-5496-7431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2022-08, Vol.80 (6), p.613-626
issn 0735-1097
1558-3597
language eng
recordid cdi_proquest_miscellaneous_2699708256
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Electrocardiographic%20Analysis%20for%20Detection%20of%20Left-Sided%20Valvular%20Heart%20Disease&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Elias,%20Pierre&rft.date=2022-08-09&rft.volume=80&rft.issue=6&rft.spage=613&rft.epage=626&rft.pages=613-626&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2022.05.029&rft_dat=%3Cproquest_cross%3E2699708256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699708256&rft_id=info:pmid/&rfr_iscdi=true