Comment on “Pushing the frontiers of density functionals by solving the fractional electron problem”

Kirkpatrick et al . (Reports, 9 December 2021, p. 1385) trained a neural network–based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-08, Vol.377 (6606), p.eabq3385-eabq3385
Hauptverfasser: Gerasimov, Igor S., Losev, Timofey V., Epifanov, Evgeny Yu, Rudenko, Irina, Bushmarinov, Ivan S., Ryabov, Alexander A., Zhilyaev, Petr A., Medvedev, Michael G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabq3385
container_issue 6606
container_start_page eabq3385
container_title Science (American Association for the Advancement of Science)
container_volume 377
creator Gerasimov, Igor S.
Losev, Timofey V.
Epifanov, Evgeny Yu
Rudenko, Irina
Bushmarinov, Ivan S.
Ryabov, Alexander A.
Zhilyaev, Petr A.
Medvedev, Michael G.
description Kirkpatrick et al . (Reports, 9 December 2021, p. 1385) trained a neural network–based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability of DM21 to generalize the behavior of such systems does not follow from the published results and requires revisiting.
doi_str_mv 10.1126/science.abq3385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2699706958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699706958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-1f0a54a102537d76c7149028a533dedf44cadcba6cb5a69c7dbf759aad1e822a3</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EEqUws1piYUnrSxzHI6q4SZVggDlynBOaKrFb20Hq1geBl-uTkIpISExn-L__HJ0PoWtKZpSybB5MA9bATJdbznNxgiaUKJEoRvgpmhDCsyQnUpyjixDWhAyZ4hO0WriuAxuxs_iw_3rtw6qxHziuANfe2diAD9jVuAIbmrjDdW9NbJzVbcDlDgfXfv7xeowwtGDiUMcb78oWusP--xKd1UMJrsY5Re8P92-Lp2T58vi8uFsmhlEZE1oTLVJNCRNcVjIzkqaKsFwLziuo6jQ1ujKlzkwpdKaMrMpaCqV1RSFnTPMpuv3dO5ze9hBi0TXBQNtqC64PBcuUkiRTIh_Qm3_o2vX--NqRyiVnVNCBmv9SxrsQPNTFxjed9ruCkuJovhjNF6N5_gPylH0a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698732151</pqid></control><display><type>article</type><title>Comment on “Pushing the frontiers of density functionals by solving the fractional electron problem”</title><source>American Association for the Advancement of Science</source><creator>Gerasimov, Igor S. ; Losev, Timofey V. ; Epifanov, Evgeny Yu ; Rudenko, Irina ; Bushmarinov, Ivan S. ; Ryabov, Alexander A. ; Zhilyaev, Petr A. ; Medvedev, Michael G.</creator><creatorcontrib>Gerasimov, Igor S. ; Losev, Timofey V. ; Epifanov, Evgeny Yu ; Rudenko, Irina ; Bushmarinov, Ivan S. ; Ryabov, Alexander A. ; Zhilyaev, Petr A. ; Medvedev, Michael G.</creatorcontrib><description>Kirkpatrick et al . (Reports, 9 December 2021, p. 1385) trained a neural network–based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability of DM21 to generalize the behavior of such systems does not follow from the published results and requires revisiting.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq3385</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><ispartof>Science (American Association for the Advancement of Science), 2022-08, Vol.377 (6606), p.eabq3385-eabq3385</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-1f0a54a102537d76c7149028a533dedf44cadcba6cb5a69c7dbf759aad1e822a3</citedby><cites>FETCH-LOGICAL-c217t-1f0a54a102537d76c7149028a533dedf44cadcba6cb5a69c7dbf759aad1e822a3</cites><orcidid>0000-0001-6953-8317 ; 0000-0001-9111-975X ; 0000-0003-1553-9984 ; 0000-0001-7070-4052 ; 0000-0001-8392-8661 ; 0000-0001-8699-4736 ; 0000-0002-6534-4133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerasimov, Igor S.</creatorcontrib><creatorcontrib>Losev, Timofey V.</creatorcontrib><creatorcontrib>Epifanov, Evgeny Yu</creatorcontrib><creatorcontrib>Rudenko, Irina</creatorcontrib><creatorcontrib>Bushmarinov, Ivan S.</creatorcontrib><creatorcontrib>Ryabov, Alexander A.</creatorcontrib><creatorcontrib>Zhilyaev, Petr A.</creatorcontrib><creatorcontrib>Medvedev, Michael G.</creatorcontrib><title>Comment on “Pushing the frontiers of density functionals by solving the fractional electron problem”</title><title>Science (American Association for the Advancement of Science)</title><description>Kirkpatrick et al . (Reports, 9 December 2021, p. 1385) trained a neural network–based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability of DM21 to generalize the behavior of such systems does not follow from the published results and requires revisiting.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOwzAUhi0EEqUws1piYUnrSxzHI6q4SZVggDlynBOaKrFb20Hq1geBl-uTkIpISExn-L__HJ0PoWtKZpSybB5MA9bATJdbznNxgiaUKJEoRvgpmhDCsyQnUpyjixDWhAyZ4hO0WriuAxuxs_iw_3rtw6qxHziuANfe2diAD9jVuAIbmrjDdW9NbJzVbcDlDgfXfv7xeowwtGDiUMcb78oWusP--xKd1UMJrsY5Re8P92-Lp2T58vi8uFsmhlEZE1oTLVJNCRNcVjIzkqaKsFwLziuo6jQ1ujKlzkwpdKaMrMpaCqV1RSFnTPMpuv3dO5ze9hBi0TXBQNtqC64PBcuUkiRTIh_Qm3_o2vX--NqRyiVnVNCBmv9SxrsQPNTFxjed9ruCkuJovhjNF6N5_gPylH0a</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Gerasimov, Igor S.</creator><creator>Losev, Timofey V.</creator><creator>Epifanov, Evgeny Yu</creator><creator>Rudenko, Irina</creator><creator>Bushmarinov, Ivan S.</creator><creator>Ryabov, Alexander A.</creator><creator>Zhilyaev, Petr A.</creator><creator>Medvedev, Michael G.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6953-8317</orcidid><orcidid>https://orcid.org/0000-0001-9111-975X</orcidid><orcidid>https://orcid.org/0000-0003-1553-9984</orcidid><orcidid>https://orcid.org/0000-0001-7070-4052</orcidid><orcidid>https://orcid.org/0000-0001-8392-8661</orcidid><orcidid>https://orcid.org/0000-0001-8699-4736</orcidid><orcidid>https://orcid.org/0000-0002-6534-4133</orcidid></search><sort><creationdate>20220805</creationdate><title>Comment on “Pushing the frontiers of density functionals by solving the fractional electron problem”</title><author>Gerasimov, Igor S. ; Losev, Timofey V. ; Epifanov, Evgeny Yu ; Rudenko, Irina ; Bushmarinov, Ivan S. ; Ryabov, Alexander A. ; Zhilyaev, Petr A. ; Medvedev, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-1f0a54a102537d76c7149028a533dedf44cadcba6cb5a69c7dbf759aad1e822a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerasimov, Igor S.</creatorcontrib><creatorcontrib>Losev, Timofey V.</creatorcontrib><creatorcontrib>Epifanov, Evgeny Yu</creatorcontrib><creatorcontrib>Rudenko, Irina</creatorcontrib><creatorcontrib>Bushmarinov, Ivan S.</creatorcontrib><creatorcontrib>Ryabov, Alexander A.</creatorcontrib><creatorcontrib>Zhilyaev, Petr A.</creatorcontrib><creatorcontrib>Medvedev, Michael G.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerasimov, Igor S.</au><au>Losev, Timofey V.</au><au>Epifanov, Evgeny Yu</au><au>Rudenko, Irina</au><au>Bushmarinov, Ivan S.</au><au>Ryabov, Alexander A.</au><au>Zhilyaev, Petr A.</au><au>Medvedev, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on “Pushing the frontiers of density functionals by solving the fractional electron problem”</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2022-08-05</date><risdate>2022</risdate><volume>377</volume><issue>6606</issue><spage>eabq3385</spage><epage>eabq3385</epage><pages>eabq3385-eabq3385</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Kirkpatrick et al . (Reports, 9 December 2021, p. 1385) trained a neural network–based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability of DM21 to generalize the behavior of such systems does not follow from the published results and requires revisiting.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abq3385</doi><orcidid>https://orcid.org/0000-0001-6953-8317</orcidid><orcidid>https://orcid.org/0000-0001-9111-975X</orcidid><orcidid>https://orcid.org/0000-0003-1553-9984</orcidid><orcidid>https://orcid.org/0000-0001-7070-4052</orcidid><orcidid>https://orcid.org/0000-0001-8392-8661</orcidid><orcidid>https://orcid.org/0000-0001-8699-4736</orcidid><orcidid>https://orcid.org/0000-0002-6534-4133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-08, Vol.377 (6606), p.eabq3385-eabq3385
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2699706958
source American Association for the Advancement of Science
title Comment on “Pushing the frontiers of density functionals by solving the fractional electron problem”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20%E2%80%9CPushing%20the%20frontiers%20of%20density%20functionals%20by%20solving%20the%20fractional%20electron%20problem%E2%80%9D&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Gerasimov,%20Igor%20S.&rft.date=2022-08-05&rft.volume=377&rft.issue=6606&rft.spage=eabq3385&rft.epage=eabq3385&rft.pages=eabq3385-eabq3385&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq3385&rft_dat=%3Cproquest_cross%3E2699706958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698732151&rft_id=info:pmid/&rfr_iscdi=true