Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution

The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-09, Vol.61 (39), p.e202209839-n/a
Hauptverfasser: Tatarchuk, Stephen W., Medvedev, Jury J., Li, Feng, Tobolovskaya, Yulia, Klinkova, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e202209839
container_title Angewandte Chemie International Edition
container_volume 61
creator Tatarchuk, Stephen W.
Medvedev, Jury J.
Li, Feng
Tobolovskaya, Yulia
Klinkova, Anna
description The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %. Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.
doi_str_mv 10.1002/anie.202209839
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2699701419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699701419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEuWyMltiYUnxJYljNlSViwSFgc7WqXOKXNwY7AQUJh6BZ-RJSCkCiYXp_MP3_Tr6k-SA0SGjlB9DbXHIKedUlUJtJAOWc5YKKcVmnzMhUlnmbDvZiXHR82VJi0Eyn1jzgO7j7X0EDbjuFSsyDQhk7NA0wbsu2nhCzoJfkoltgm2QQF2RUQc1rHIk17DwgdwGX7WmiaTxX6C_x5qMn71rG-vrvWRrDi7i_vfdTaZn47vRRXp1c345Or1KjcipSgsDkFVVljODszxXKKWcFUJmBRQUMgSpWCXkHJUSXDDguRQsz7gouKl4ORO7ydG69zH4pxZjo5c2GnQOavRt1LxQSlKWMdWjh3_QhW9D3X-nuVyVciFZTw3XlAk-xoBz_RjsEkKnGdWr2fVqdv0zey-otfBiHXb_0Pp0cjn-dT8BL-GG7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715422371</pqid></control><display><type>article</type><title>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tatarchuk, Stephen W. ; Medvedev, Jury J. ; Li, Feng ; Tobolovskaya, Yulia ; Klinkova, Anna</creator><creatorcontrib>Tatarchuk, Stephen W. ; Medvedev, Jury J. ; Li, Feng ; Tobolovskaya, Yulia ; Klinkova, Anna</creatorcontrib><description>The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %. Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202209839</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Computer applications ; Cyanates ; Electrocatalysis ; Electrochemistry ; Electrolysis ; Nickel ; Nickel compounds ; Nitrogen oxides ; Nitrogen removal ; Overoxidation ; Oxidation ; Reaction Mechanism ; Reaction mechanisms ; Selectivity ; Urea ; Urea Electrolysis ; Ureas</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (39), p.e202209839-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</citedby><cites>FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</cites><orcidid>0000-0003-0337-0579 ; 0000-0002-6706-0046 ; 0000-0002-4156-7455 ; 0000-0002-9656-9132 ; 0000-0001-9914-1142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202209839$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202209839$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tatarchuk, Stephen W.</creatorcontrib><creatorcontrib>Medvedev, Jury J.</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Tobolovskaya, Yulia</creatorcontrib><creatorcontrib>Klinkova, Anna</creatorcontrib><title>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</title><title>Angewandte Chemie International Edition</title><description>The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %. Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.</description><subject>Catalysts</subject><subject>Computer applications</subject><subject>Cyanates</subject><subject>Electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Nitrogen oxides</subject><subject>Nitrogen removal</subject><subject>Overoxidation</subject><subject>Oxidation</subject><subject>Reaction Mechanism</subject><subject>Reaction mechanisms</subject><subject>Selectivity</subject><subject>Urea</subject><subject>Urea Electrolysis</subject><subject>Ureas</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhiMEEuWyMltiYUnxJYljNlSViwSFgc7WqXOKXNwY7AQUJh6BZ-RJSCkCiYXp_MP3_Tr6k-SA0SGjlB9DbXHIKedUlUJtJAOWc5YKKcVmnzMhUlnmbDvZiXHR82VJi0Eyn1jzgO7j7X0EDbjuFSsyDQhk7NA0wbsu2nhCzoJfkoltgm2QQF2RUQc1rHIk17DwgdwGX7WmiaTxX6C_x5qMn71rG-vrvWRrDi7i_vfdTaZn47vRRXp1c345Or1KjcipSgsDkFVVljODszxXKKWcFUJmBRQUMgSpWCXkHJUSXDDguRQsz7gouKl4ORO7ydG69zH4pxZjo5c2GnQOavRt1LxQSlKWMdWjh3_QhW9D3X-nuVyVciFZTw3XlAk-xoBz_RjsEkKnGdWr2fVqdv0zey-otfBiHXb_0Pp0cjn-dT8BL-GG7w</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Tatarchuk, Stephen W.</creator><creator>Medvedev, Jury J.</creator><creator>Li, Feng</creator><creator>Tobolovskaya, Yulia</creator><creator>Klinkova, Anna</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0337-0579</orcidid><orcidid>https://orcid.org/0000-0002-6706-0046</orcidid><orcidid>https://orcid.org/0000-0002-4156-7455</orcidid><orcidid>https://orcid.org/0000-0002-9656-9132</orcidid><orcidid>https://orcid.org/0000-0001-9914-1142</orcidid></search><sort><creationdate>20220926</creationdate><title>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</title><author>Tatarchuk, Stephen W. ; Medvedev, Jury J. ; Li, Feng ; Tobolovskaya, Yulia ; Klinkova, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Computer applications</topic><topic>Cyanates</topic><topic>Electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Nitrogen oxides</topic><topic>Nitrogen removal</topic><topic>Overoxidation</topic><topic>Oxidation</topic><topic>Reaction Mechanism</topic><topic>Reaction mechanisms</topic><topic>Selectivity</topic><topic>Urea</topic><topic>Urea Electrolysis</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatarchuk, Stephen W.</creatorcontrib><creatorcontrib>Medvedev, Jury J.</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Tobolovskaya, Yulia</creatorcontrib><creatorcontrib>Klinkova, Anna</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatarchuk, Stephen W.</au><au>Medvedev, Jury J.</au><au>Li, Feng</au><au>Tobolovskaya, Yulia</au><au>Klinkova, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-09-26</date><risdate>2022</risdate><volume>61</volume><issue>39</issue><spage>e202209839</spage><epage>n/a</epage><pages>e202209839-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %. Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202209839</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0337-0579</orcidid><orcidid>https://orcid.org/0000-0002-6706-0046</orcidid><orcidid>https://orcid.org/0000-0002-4156-7455</orcidid><orcidid>https://orcid.org/0000-0002-9656-9132</orcidid><orcidid>https://orcid.org/0000-0001-9914-1142</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-09, Vol.61 (39), p.e202209839-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2699701419
source Wiley Online Library Journals Frontfile Complete
subjects Catalysts
Computer applications
Cyanates
Electrocatalysis
Electrochemistry
Electrolysis
Nickel
Nickel compounds
Nitrogen oxides
Nitrogen removal
Overoxidation
Oxidation
Reaction Mechanism
Reaction mechanisms
Selectivity
Urea
Urea Electrolysis
Ureas
title Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%E2%80%90Catalyzed%20Urea%20Electrolysis:%20From%20Nitrite%20and%20Cyanate%20as%20Major%20Products%20to%20Nitrogen%20Evolution&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Tatarchuk,%20Stephen%20W.&rft.date=2022-09-26&rft.volume=61&rft.issue=39&rft.spage=e202209839&rft.epage=n/a&rft.pages=e202209839-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202209839&rft_dat=%3Cproquest_cross%3E2699701419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715422371&rft_id=info:pmid/&rfr_iscdi=true