Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution
The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-09, Vol.61 (39), p.e202209839-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 39 |
container_start_page | e202209839 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Tatarchuk, Stephen W. Medvedev, Jury J. Li, Feng Tobolovskaya, Yulia Klinkova, Anna |
description | The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %.
Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway. |
doi_str_mv | 10.1002/anie.202209839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2699701419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699701419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEuWyMltiYUnxJYljNlSViwSFgc7WqXOKXNwY7AQUJh6BZ-RJSCkCiYXp_MP3_Tr6k-SA0SGjlB9DbXHIKedUlUJtJAOWc5YKKcVmnzMhUlnmbDvZiXHR82VJi0Eyn1jzgO7j7X0EDbjuFSsyDQhk7NA0wbsu2nhCzoJfkoltgm2QQF2RUQc1rHIk17DwgdwGX7WmiaTxX6C_x5qMn71rG-vrvWRrDi7i_vfdTaZn47vRRXp1c345Or1KjcipSgsDkFVVljODszxXKKWcFUJmBRQUMgSpWCXkHJUSXDDguRQsz7gouKl4ORO7ydG69zH4pxZjo5c2GnQOavRt1LxQSlKWMdWjh3_QhW9D3X-nuVyVciFZTw3XlAk-xoBz_RjsEkKnGdWr2fVqdv0zey-otfBiHXb_0Pp0cjn-dT8BL-GG7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715422371</pqid></control><display><type>article</type><title>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tatarchuk, Stephen W. ; Medvedev, Jury J. ; Li, Feng ; Tobolovskaya, Yulia ; Klinkova, Anna</creator><creatorcontrib>Tatarchuk, Stephen W. ; Medvedev, Jury J. ; Li, Feng ; Tobolovskaya, Yulia ; Klinkova, Anna</creatorcontrib><description>The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %.
Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202209839</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Computer applications ; Cyanates ; Electrocatalysis ; Electrochemistry ; Electrolysis ; Nickel ; Nickel compounds ; Nitrogen oxides ; Nitrogen removal ; Overoxidation ; Oxidation ; Reaction Mechanism ; Reaction mechanisms ; Selectivity ; Urea ; Urea Electrolysis ; Ureas</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (39), p.e202209839-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</citedby><cites>FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</cites><orcidid>0000-0003-0337-0579 ; 0000-0002-6706-0046 ; 0000-0002-4156-7455 ; 0000-0002-9656-9132 ; 0000-0001-9914-1142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202209839$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202209839$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tatarchuk, Stephen W.</creatorcontrib><creatorcontrib>Medvedev, Jury J.</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Tobolovskaya, Yulia</creatorcontrib><creatorcontrib>Klinkova, Anna</creatorcontrib><title>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</title><title>Angewandte Chemie International Edition</title><description>The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %.
Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.</description><subject>Catalysts</subject><subject>Computer applications</subject><subject>Cyanates</subject><subject>Electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Nitrogen oxides</subject><subject>Nitrogen removal</subject><subject>Overoxidation</subject><subject>Oxidation</subject><subject>Reaction Mechanism</subject><subject>Reaction mechanisms</subject><subject>Selectivity</subject><subject>Urea</subject><subject>Urea Electrolysis</subject><subject>Ureas</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhiMEEuWyMltiYUnxJYljNlSViwSFgc7WqXOKXNwY7AQUJh6BZ-RJSCkCiYXp_MP3_Tr6k-SA0SGjlB9DbXHIKedUlUJtJAOWc5YKKcVmnzMhUlnmbDvZiXHR82VJi0Eyn1jzgO7j7X0EDbjuFSsyDQhk7NA0wbsu2nhCzoJfkoltgm2QQF2RUQc1rHIk17DwgdwGX7WmiaTxX6C_x5qMn71rG-vrvWRrDi7i_vfdTaZn47vRRXp1c345Or1KjcipSgsDkFVVljODszxXKKWcFUJmBRQUMgSpWCXkHJUSXDDguRQsz7gouKl4ORO7ydG69zH4pxZjo5c2GnQOavRt1LxQSlKWMdWjh3_QhW9D3X-nuVyVciFZTw3XlAk-xoBz_RjsEkKnGdWr2fVqdv0zey-otfBiHXb_0Pp0cjn-dT8BL-GG7w</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Tatarchuk, Stephen W.</creator><creator>Medvedev, Jury J.</creator><creator>Li, Feng</creator><creator>Tobolovskaya, Yulia</creator><creator>Klinkova, Anna</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0337-0579</orcidid><orcidid>https://orcid.org/0000-0002-6706-0046</orcidid><orcidid>https://orcid.org/0000-0002-4156-7455</orcidid><orcidid>https://orcid.org/0000-0002-9656-9132</orcidid><orcidid>https://orcid.org/0000-0001-9914-1142</orcidid></search><sort><creationdate>20220926</creationdate><title>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</title><author>Tatarchuk, Stephen W. ; Medvedev, Jury J. ; Li, Feng ; Tobolovskaya, Yulia ; Klinkova, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-6caa4dd451ceb559e777b63746a60a4ea791d37fe993231a25731542362cd28b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Computer applications</topic><topic>Cyanates</topic><topic>Electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Nitrogen oxides</topic><topic>Nitrogen removal</topic><topic>Overoxidation</topic><topic>Oxidation</topic><topic>Reaction Mechanism</topic><topic>Reaction mechanisms</topic><topic>Selectivity</topic><topic>Urea</topic><topic>Urea Electrolysis</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatarchuk, Stephen W.</creatorcontrib><creatorcontrib>Medvedev, Jury J.</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Tobolovskaya, Yulia</creatorcontrib><creatorcontrib>Klinkova, Anna</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatarchuk, Stephen W.</au><au>Medvedev, Jury J.</au><au>Li, Feng</au><au>Tobolovskaya, Yulia</au><au>Klinkova, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-09-26</date><risdate>2022</risdate><volume>61</volume><issue>39</issue><spage>e202209839</spage><epage>n/a</epage><pages>e202209839-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N‐enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx− usually dominates over its oxidation to N2 at Ni(OH)2‐based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx− on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO−), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx− and N2 follows two distinct vacancy‐dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8Cu0.2(OH)2) increases the faradaic efficiency of N2 from 30 % to 55 %.
Urea electrooxidation to N2 is a promising anodic process for producing renewable fuels at the cathode. However, Ni(OH)2‐catalyzed urea oxidation predominantly produces a ≈1 : 1 mixture of nitrite+cyanate, with N2 being a minor product. A mechanistic analysis suggests that the binding site availability for both N atoms in urea is crucial for reaction selectivity. Doping Ni(OH)2 with Cu significantly suppresses the cyanate+nitrate pathway.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202209839</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0337-0579</orcidid><orcidid>https://orcid.org/0000-0002-6706-0046</orcidid><orcidid>https://orcid.org/0000-0002-4156-7455</orcidid><orcidid>https://orcid.org/0000-0002-9656-9132</orcidid><orcidid>https://orcid.org/0000-0001-9914-1142</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-09, Vol.61 (39), p.e202209839-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2699701419 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysts Computer applications Cyanates Electrocatalysis Electrochemistry Electrolysis Nickel Nickel compounds Nitrogen oxides Nitrogen removal Overoxidation Oxidation Reaction Mechanism Reaction mechanisms Selectivity Urea Urea Electrolysis Ureas |
title | Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%E2%80%90Catalyzed%20Urea%20Electrolysis:%20From%20Nitrite%20and%20Cyanate%20as%20Major%20Products%20to%20Nitrogen%20Evolution&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Tatarchuk,%20Stephen%20W.&rft.date=2022-09-26&rft.volume=61&rft.issue=39&rft.spage=e202209839&rft.epage=n/a&rft.pages=e202209839-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202209839&rft_dat=%3Cproquest_cross%3E2699701419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715422371&rft_id=info:pmid/&rfr_iscdi=true |