Straight lines have to be straight

Most algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle or fish-eye lenses, generate a lot of non-linear distortion which can be critical. To find the distortion parameters of a camera, we use the followin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2001-08, Vol.13 (1), p.14-24
Hauptverfasser: Devernay, Frédéric, Faugeras, Olivier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 14
container_title Machine vision and applications
container_volume 13
creator Devernay, Frédéric
Faugeras, Olivier
description Most algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle or fish-eye lenses, generate a lot of non-linear distortion which can be critical. To find the distortion parameters of a camera, we use the following fundamental property: a camera follows the pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, if we find the transformation on the video image so that every line in space is viewed in the transformed image as a line, then we know how to remove the distortion from the image. The algorithm consists of first doing edge extraction on a possibly distorted video sequence, then doing polygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, and then finding the parameters of our distortion model that best transform these edges to segments. Results are presented on real video images, compared with distortion calibration obtained by a full camera calibration method which uses a calibration grid.
doi_str_mv 10.1007/PL00013269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26988229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26988229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2529-eb1d9eb17df4943b8c750579b25770f52fcfd4586f022ec8e12cb374ba51c8d93</originalsourceid><addsrcrecordid>eNpFj01LAzEURbNQsFY3_oLBhQth9OUlaZKlFL9gQEFdhyTzYkemnZpMBf-9LS24uXdxDxcOYxccbjiAvn1tAIALnNkjNgErsDZg8YSdlvK1XaTWcsIu38bsu8_FWPXdikq18D9UjUMVqCqH5YwdJ98XOj_0lH083L_Pn-rm5fF5ftfUERXamgJv7TZ0m6SVIpioFShtAyqtISlMMbVSmVkCRIqGOMYgtAxe8WhaK6bsav-7zsP3hsroll2J1Pd-RcOmuK2IMYg78HoPxjyUkim5de6WPv86Dm6n7v7VxR8tBUuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26988229</pqid></control><display><type>article</type><title>Straight lines have to be straight</title><source>Springer Nature - Complete Springer Journals</source><creator>Devernay, Frédéric ; Faugeras, Olivier</creator><creatorcontrib>Devernay, Frédéric ; Faugeras, Olivier</creatorcontrib><description>Most algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle or fish-eye lenses, generate a lot of non-linear distortion which can be critical. To find the distortion parameters of a camera, we use the following fundamental property: a camera follows the pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, if we find the transformation on the video image so that every line in space is viewed in the transformed image as a line, then we know how to remove the distortion from the image. The algorithm consists of first doing edge extraction on a possibly distorted video sequence, then doing polygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, and then finding the parameters of our distortion model that best transform these edges to segments. Results are presented on real video images, compared with distortion calibration obtained by a full camera calibration method which uses a calibration grid.</description><identifier>ISSN: 0932-8092</identifier><identifier>DOI: 10.1007/PL00013269</identifier><language>eng</language><ispartof>Machine vision and applications, 2001-08, Vol.13 (1), p.14-24</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2529-eb1d9eb17df4943b8c750579b25770f52fcfd4586f022ec8e12cb374ba51c8d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devernay, Frédéric</creatorcontrib><creatorcontrib>Faugeras, Olivier</creatorcontrib><title>Straight lines have to be straight</title><title>Machine vision and applications</title><description>Most algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle or fish-eye lenses, generate a lot of non-linear distortion which can be critical. To find the distortion parameters of a camera, we use the following fundamental property: a camera follows the pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, if we find the transformation on the video image so that every line in space is viewed in the transformed image as a line, then we know how to remove the distortion from the image. The algorithm consists of first doing edge extraction on a possibly distorted video sequence, then doing polygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, and then finding the parameters of our distortion model that best transform these edges to segments. Results are presented on real video images, compared with distortion calibration obtained by a full camera calibration method which uses a calibration grid.</description><issn>0932-8092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFj01LAzEURbNQsFY3_oLBhQth9OUlaZKlFL9gQEFdhyTzYkemnZpMBf-9LS24uXdxDxcOYxccbjiAvn1tAIALnNkjNgErsDZg8YSdlvK1XaTWcsIu38bsu8_FWPXdikq18D9UjUMVqCqH5YwdJ98XOj_0lH083L_Pn-rm5fF5ftfUERXamgJv7TZ0m6SVIpioFShtAyqtISlMMbVSmVkCRIqGOMYgtAxe8WhaK6bsav-7zsP3hsroll2J1Pd-RcOmuK2IMYg78HoPxjyUkim5de6WPv86Dm6n7v7VxR8tBUuc</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Devernay, Frédéric</creator><creator>Faugeras, Olivier</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010801</creationdate><title>Straight lines have to be straight</title><author>Devernay, Frédéric ; Faugeras, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2529-eb1d9eb17df4943b8c750579b25770f52fcfd4586f022ec8e12cb374ba51c8d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devernay, Frédéric</creatorcontrib><creatorcontrib>Faugeras, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devernay, Frédéric</au><au>Faugeras, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Straight lines have to be straight</atitle><jtitle>Machine vision and applications</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>13</volume><issue>1</issue><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>0932-8092</issn><abstract>Most algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle or fish-eye lenses, generate a lot of non-linear distortion which can be critical. To find the distortion parameters of a camera, we use the following fundamental property: a camera follows the pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, if we find the transformation on the video image so that every line in space is viewed in the transformed image as a line, then we know how to remove the distortion from the image. The algorithm consists of first doing edge extraction on a possibly distorted video sequence, then doing polygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, and then finding the parameters of our distortion model that best transform these edges to segments. Results are presented on real video images, compared with distortion calibration obtained by a full camera calibration method which uses a calibration grid.</abstract><doi>10.1007/PL00013269</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2001-08, Vol.13 (1), p.14-24
issn 0932-8092
language eng
recordid cdi_proquest_miscellaneous_26988229
source Springer Nature - Complete Springer Journals
title Straight lines have to be straight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Straight%20lines%20have%20to%20be%20straight&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Devernay,%20Fr%C3%A9d%C3%A9ric&rft.date=2001-08-01&rft.volume=13&rft.issue=1&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=0932-8092&rft_id=info:doi/10.1007/PL00013269&rft_dat=%3Cproquest_cross%3E26988229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26988229&rft_id=info:pmid/&rfr_iscdi=true