Cavity nucleation in single-component homogeneous amorphous solids under negative pressure

Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2022-10, Vol.34 (41), p.414001
Hauptverfasser: Galimzyanov, B N, Mokshin, A V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 41
container_start_page 414001
container_title Journal of physics. Condensed matter
container_volume 34
creator Galimzyanov, B N
Mokshin, A V
description Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.
doi_str_mv 10.1088/1361-648X/ac8462
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2698632202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698632202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePebowbrTph_pURa_YMGLgngJSTrdzdImNWkX9r-3teLN0wzDe495P0KuY7iLgfNVzPI4ylP-sZKap3lyQhZ_p1OygDJjES95ek4uQtgDQMpZuiCfa3kw_ZHaQTcoe-MsNZYGY7cNRtq1nbNoe7pzrduiRTcEKlvnu920BdeYKtDBVuipxe3oPyDtPIYweLwkZ7VsAl79ziV5f3x4Wz9Hm9enl_X9JtIsZn2kdAolFJBmRamglEqxLC95FYNiwCrOdVKrrGBMFVzVXElMQOYVQxZrBVXGluRmzu28-xow9KI1QWPTyJ9_RTKm5SxJIBmlMEu1dyF4rEXnTSv9UcQgJoxiYiYmZmLGOFpuZ4txndi7wduxy__yb3y5dZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698632202</pqid></control><display><type>article</type><title>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Galimzyanov, B N ; Mokshin, A V</creator><creatorcontrib>Galimzyanov, B N ; Mokshin, A V</creatorcontrib><description>Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ac8462</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bulk metallic glasses ; cavity formation ; classical nucleation theory ; molecular dynamics</subject><ispartof>Journal of physics. Condensed matter, 2022-10, Vol.34 (41), p.414001</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</citedby><cites>FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</cites><orcidid>0000-0002-1160-5748 ; 0000-0003-2919-864X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ac8462/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Galimzyanov, B N</creatorcontrib><creatorcontrib>Mokshin, A V</creatorcontrib><title>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.</description><subject>bulk metallic glasses</subject><subject>cavity formation</subject><subject>classical nucleation theory</subject><subject>molecular dynamics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePebowbrTph_pURa_YMGLgngJSTrdzdImNWkX9r-3teLN0wzDe495P0KuY7iLgfNVzPI4ylP-sZKap3lyQhZ_p1OygDJjES95ek4uQtgDQMpZuiCfa3kw_ZHaQTcoe-MsNZYGY7cNRtq1nbNoe7pzrduiRTcEKlvnu920BdeYKtDBVuipxe3oPyDtPIYweLwkZ7VsAl79ziV5f3x4Wz9Hm9enl_X9JtIsZn2kdAolFJBmRamglEqxLC95FYNiwCrOdVKrrGBMFVzVXElMQOYVQxZrBVXGluRmzu28-xow9KI1QWPTyJ9_RTKm5SxJIBmlMEu1dyF4rEXnTSv9UcQgJoxiYiYmZmLGOFpuZ4txndi7wduxy__yb3y5dZI</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Galimzyanov, B N</creator><creator>Mokshin, A V</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1160-5748</orcidid><orcidid>https://orcid.org/0000-0003-2919-864X</orcidid></search><sort><creationdate>20221012</creationdate><title>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</title><author>Galimzyanov, B N ; Mokshin, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bulk metallic glasses</topic><topic>cavity formation</topic><topic>classical nucleation theory</topic><topic>molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galimzyanov, B N</creatorcontrib><creatorcontrib>Mokshin, A V</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galimzyanov, B N</au><au>Mokshin, A V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>34</volume><issue>41</issue><spage>414001</spage><pages>414001-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-648X/ac8462</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1160-5748</orcidid><orcidid>https://orcid.org/0000-0003-2919-864X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2022-10, Vol.34 (41), p.414001
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_2698632202
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects bulk metallic glasses
cavity formation
classical nucleation theory
molecular dynamics
title Cavity nucleation in single-component homogeneous amorphous solids under negative pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20nucleation%20in%20single-component%20homogeneous%20amorphous%20solids%20under%20negative%20pressure&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Galimzyanov,%20B%20N&rft.date=2022-10-12&rft.volume=34&rft.issue=41&rft.spage=414001&rft.pages=414001-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ac8462&rft_dat=%3Cproquest_iop_j%3E2698632202%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698632202&rft_id=info:pmid/&rfr_iscdi=true