Cavity nucleation in single-component homogeneous amorphous solids under negative pressure
Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homo...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2022-10, Vol.34 (41), p.414001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 41 |
container_start_page | 414001 |
container_title | Journal of physics. Condensed matter |
container_volume | 34 |
creator | Galimzyanov, B N Mokshin, A V |
description | Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems. |
doi_str_mv | 10.1088/1361-648X/ac8462 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2698632202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698632202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePebowbrTph_pURa_YMGLgngJSTrdzdImNWkX9r-3teLN0wzDe495P0KuY7iLgfNVzPI4ylP-sZKap3lyQhZ_p1OygDJjES95ek4uQtgDQMpZuiCfa3kw_ZHaQTcoe-MsNZYGY7cNRtq1nbNoe7pzrduiRTcEKlvnu920BdeYKtDBVuipxe3oPyDtPIYweLwkZ7VsAl79ziV5f3x4Wz9Hm9enl_X9JtIsZn2kdAolFJBmRamglEqxLC95FYNiwCrOdVKrrGBMFVzVXElMQOYVQxZrBVXGluRmzu28-xow9KI1QWPTyJ9_RTKm5SxJIBmlMEu1dyF4rEXnTSv9UcQgJoxiYiYmZmLGOFpuZ4txndi7wduxy__yb3y5dZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698632202</pqid></control><display><type>article</type><title>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Galimzyanov, B N ; Mokshin, A V</creator><creatorcontrib>Galimzyanov, B N ; Mokshin, A V</creatorcontrib><description>Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ac8462</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bulk metallic glasses ; cavity formation ; classical nucleation theory ; molecular dynamics</subject><ispartof>Journal of physics. Condensed matter, 2022-10, Vol.34 (41), p.414001</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</citedby><cites>FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</cites><orcidid>0000-0002-1160-5748 ; 0000-0003-2919-864X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ac8462/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Galimzyanov, B N</creatorcontrib><creatorcontrib>Mokshin, A V</creatorcontrib><title>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.</description><subject>bulk metallic glasses</subject><subject>cavity formation</subject><subject>classical nucleation theory</subject><subject>molecular dynamics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePebowbrTph_pURa_YMGLgngJSTrdzdImNWkX9r-3teLN0wzDe495P0KuY7iLgfNVzPI4ylP-sZKap3lyQhZ_p1OygDJjES95ek4uQtgDQMpZuiCfa3kw_ZHaQTcoe-MsNZYGY7cNRtq1nbNoe7pzrduiRTcEKlvnu920BdeYKtDBVuipxe3oPyDtPIYweLwkZ7VsAl79ziV5f3x4Wz9Hm9enl_X9JtIsZn2kdAolFJBmRamglEqxLC95FYNiwCrOdVKrrGBMFVzVXElMQOYVQxZrBVXGluRmzu28-xow9KI1QWPTyJ9_RTKm5SxJIBmlMEu1dyF4rEXnTSv9UcQgJoxiYiYmZmLGOFpuZ4txndi7wduxy__yb3y5dZI</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Galimzyanov, B N</creator><creator>Mokshin, A V</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1160-5748</orcidid><orcidid>https://orcid.org/0000-0003-2919-864X</orcidid></search><sort><creationdate>20221012</creationdate><title>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</title><author>Galimzyanov, B N ; Mokshin, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-bc4090704579b09abb35698d10b303d88c2fb5733b78bf8bae20a6d3e31cb0d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bulk metallic glasses</topic><topic>cavity formation</topic><topic>classical nucleation theory</topic><topic>molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galimzyanov, B N</creatorcontrib><creatorcontrib>Mokshin, A V</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galimzyanov, B N</au><au>Mokshin, A V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity nucleation in single-component homogeneous amorphous solids under negative pressure</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>34</volume><issue>41</issue><spage>414001</spage><pages>414001-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Understanding the cavity formation and cavity growth mechanisms in solids has fundamental and applied importance for the correct determination of their exploitation capabilities and mechanical characteristics. In this work, we present the molecular dynamics simulation results for the process of homogeneous formation of nanosized cavities in a single-component amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method has been developed, which is based on filling cavities by virtual particles (balls) of the same diameter. By means of the mean first-passage time analysis, it was shown that the cavity formation in an amorphous metallic melt is the activation-type process. This process can be described in terms of the classical nucleation theory, which is usually applied to the case of first order phase transitions. Activation energy, critical size and nucleation rate of cavities are calculated, the values of which are comparable with those for the case of crystal nucleation in amorphous systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-648X/ac8462</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1160-5748</orcidid><orcidid>https://orcid.org/0000-0003-2919-864X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2022-10, Vol.34 (41), p.414001 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_2698632202 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | bulk metallic glasses cavity formation classical nucleation theory molecular dynamics |
title | Cavity nucleation in single-component homogeneous amorphous solids under negative pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20nucleation%20in%20single-component%20homogeneous%20amorphous%20solids%20under%20negative%20pressure&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Galimzyanov,%20B%20N&rft.date=2022-10-12&rft.volume=34&rft.issue=41&rft.spage=414001&rft.pages=414001-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ac8462&rft_dat=%3Cproquest_iop_j%3E2698632202%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698632202&rft_id=info:pmid/&rfr_iscdi=true |