CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia
Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2022-08, Vol.28 (8), p.1573-1580 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1580 |
---|---|
container_issue | 8 |
container_start_page | 1573 |
container_title | Nature medicine |
container_volume | 28 |
creator | Fu, Bin Liao, Jiaoyang Chen, Shuanghong Li, Wei Wang, Qiudao Hu, Jian Yang, Fei Hsiao, Shenlin Jiang, Yanhong Wang, Liren Chen, Fangping Zhang, Yuanjin Wang, Xin Li, Dali Liu, Mingyao Wu, Yuxuan |
description | Gene editing to disrupt the GATA1-binding site at the +58
BCL11A
erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by
HBB
gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted
BCL11A
enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β
0
/β
0
genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl
−1
at screening to 15.0 and 14.0 g dl
−1
at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9
BCL11A
-edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence. |
doi_str_mv | 10.1038/s41591-022-01906-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2698629690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698629690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</originalsourceid><addsrcrecordid>eNp9kUtKxEAQhoMo-LyAqwY3blqrH-mklxp8wYDiA9w1naQyk2GmM3YnC115B2_iQTyEJ7GdEQQXLoqqor7_p-BPkn0GRwxEfhwkSzWjwDkFpkHRl7Vki6VSUZbB43qcIctprlO1mWyHMAUAAaneSobi9uru5vbz9a2wQdM51q3tsSZjdEji0rduTLqG9BMkp8WIsROCbmJdhZ40nSeLpcC3Ffl4h-NYpPfWhWYIbedojQt0Nbo-Xmk_sTMbAs5bu5tsNHYWcO-n7yQP52f3xSUdXV9cFScjWvGc95SDalJV8zoHK1DWWuZlwyRwLXX8HmwpUOQZijq1pa0UqAwbnkImWQlVycVOcrjyXfjuacDQm3kbKpzNrMNuCIYrnSuulYaIHvxBp93gXfzO8AyE0lKBjBRfUZXvQvDYmIVv59Y_GwbmOwmzSsLEJMwyCfMSRWIlChF2Y_S_1v-ovgAfC44I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703694604</pqid></control><display><type>article</type><title>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Bin ; Liao, Jiaoyang ; Chen, Shuanghong ; Li, Wei ; Wang, Qiudao ; Hu, Jian ; Yang, Fei ; Hsiao, Shenlin ; Jiang, Yanhong ; Wang, Liren ; Chen, Fangping ; Zhang, Yuanjin ; Wang, Xin ; Li, Dali ; Liu, Mingyao ; Wu, Yuxuan</creator><creatorcontrib>Fu, Bin ; Liao, Jiaoyang ; Chen, Shuanghong ; Li, Wei ; Wang, Qiudao ; Hu, Jian ; Yang, Fei ; Hsiao, Shenlin ; Jiang, Yanhong ; Wang, Liren ; Chen, Fangping ; Zhang, Yuanjin ; Wang, Xin ; Li, Dali ; Liu, Mingyao ; Wu, Yuxuan</creatorcontrib><description>Gene editing to disrupt the GATA1-binding site at the +58
BCL11A
erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by
HBB
gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted
BCL11A
enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β
0
/β
0
genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl
−1
at screening to 15.0 and 14.0 g dl
−1
at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9
BCL11A
-edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-022-01906-z</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/532/1542 ; 631/61/201/2110 ; 631/61/2320 ; 692/699/1541/13 ; Autografts ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Blood diseases ; Blood transfusion ; Bone marrow ; Cancer Research ; Cells (biology) ; Children ; CRISPR ; DNA nucleotidylexotransferase ; Editing ; GATA-1 protein ; Genetic modification ; Genome editing ; Genotypes ; HBB gene ; Hematopoietic stem cells ; Hemoglobin ; Hemoglobinopathy ; Infectious Diseases ; Leukocytes (mononuclear) ; Metabolic Diseases ; Molecular Medicine ; Mutation ; Neurosciences ; Patients ; Pediatrics ; Peripheral blood mononuclear cells ; Point mutation ; Progenitor cells ; Side effects ; Thalassemia ; Transcriptomes ; Transfusion ; Transplantation</subject><ispartof>Nature medicine, 2022-08, Vol.28 (8), p.1573-1580</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</citedby><cites>FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</cites><orcidid>0000-0001-7339-5048 ; 0000-0002-9155-9883 ; 0000-0002-3119-7497 ; 0000-0003-3512-7055 ; 0000-0001-8079-8638 ; 0000-0002-0046-8493 ; 0000-0002-0443-563X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-022-01906-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-022-01906-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Liao, Jiaoyang</creatorcontrib><creatorcontrib>Chen, Shuanghong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Qiudao</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Hsiao, Shenlin</creatorcontrib><creatorcontrib>Jiang, Yanhong</creatorcontrib><creatorcontrib>Wang, Liren</creatorcontrib><creatorcontrib>Chen, Fangping</creatorcontrib><creatorcontrib>Zhang, Yuanjin</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Li, Dali</creatorcontrib><creatorcontrib>Liu, Mingyao</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><title>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><description>Gene editing to disrupt the GATA1-binding site at the +58
BCL11A
erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by
HBB
gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted
BCL11A
enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β
0
/β
0
genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl
−1
at screening to 15.0 and 14.0 g dl
−1
at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9
BCL11A
-edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.</description><subject>631/532/1542</subject><subject>631/61/201/2110</subject><subject>631/61/2320</subject><subject>692/699/1541/13</subject><subject>Autografts</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood diseases</subject><subject>Blood transfusion</subject><subject>Bone marrow</subject><subject>Cancer Research</subject><subject>Cells (biology)</subject><subject>Children</subject><subject>CRISPR</subject><subject>DNA nucleotidylexotransferase</subject><subject>Editing</subject><subject>GATA-1 protein</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genotypes</subject><subject>HBB gene</subject><subject>Hematopoietic stem cells</subject><subject>Hemoglobin</subject><subject>Hemoglobinopathy</subject><subject>Infectious Diseases</subject><subject>Leukocytes (mononuclear)</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Peripheral blood mononuclear cells</subject><subject>Point mutation</subject><subject>Progenitor cells</subject><subject>Side effects</subject><subject>Thalassemia</subject><subject>Transcriptomes</subject><subject>Transfusion</subject><subject>Transplantation</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtKxEAQhoMo-LyAqwY3blqrH-mklxp8wYDiA9w1naQyk2GmM3YnC115B2_iQTyEJ7GdEQQXLoqqor7_p-BPkn0GRwxEfhwkSzWjwDkFpkHRl7Vki6VSUZbB43qcIctprlO1mWyHMAUAAaneSobi9uru5vbz9a2wQdM51q3tsSZjdEji0rduTLqG9BMkp8WIsROCbmJdhZ40nSeLpcC3Ffl4h-NYpPfWhWYIbedojQt0Nbo-Xmk_sTMbAs5bu5tsNHYWcO-n7yQP52f3xSUdXV9cFScjWvGc95SDalJV8zoHK1DWWuZlwyRwLXX8HmwpUOQZijq1pa0UqAwbnkImWQlVycVOcrjyXfjuacDQm3kbKpzNrMNuCIYrnSuulYaIHvxBp93gXfzO8AyE0lKBjBRfUZXvQvDYmIVv59Y_GwbmOwmzSsLEJMwyCfMSRWIlChF2Y_S_1v-ovgAfC44I</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fu, Bin</creator><creator>Liao, Jiaoyang</creator><creator>Chen, Shuanghong</creator><creator>Li, Wei</creator><creator>Wang, Qiudao</creator><creator>Hu, Jian</creator><creator>Yang, Fei</creator><creator>Hsiao, Shenlin</creator><creator>Jiang, Yanhong</creator><creator>Wang, Liren</creator><creator>Chen, Fangping</creator><creator>Zhang, Yuanjin</creator><creator>Wang, Xin</creator><creator>Li, Dali</creator><creator>Liu, Mingyao</creator><creator>Wu, Yuxuan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7339-5048</orcidid><orcidid>https://orcid.org/0000-0002-9155-9883</orcidid><orcidid>https://orcid.org/0000-0002-3119-7497</orcidid><orcidid>https://orcid.org/0000-0003-3512-7055</orcidid><orcidid>https://orcid.org/0000-0001-8079-8638</orcidid><orcidid>https://orcid.org/0000-0002-0046-8493</orcidid><orcidid>https://orcid.org/0000-0002-0443-563X</orcidid></search><sort><creationdate>20220801</creationdate><title>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</title><author>Fu, Bin ; Liao, Jiaoyang ; Chen, Shuanghong ; Li, Wei ; Wang, Qiudao ; Hu, Jian ; Yang, Fei ; Hsiao, Shenlin ; Jiang, Yanhong ; Wang, Liren ; Chen, Fangping ; Zhang, Yuanjin ; Wang, Xin ; Li, Dali ; Liu, Mingyao ; Wu, Yuxuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/532/1542</topic><topic>631/61/201/2110</topic><topic>631/61/2320</topic><topic>692/699/1541/13</topic><topic>Autografts</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood diseases</topic><topic>Blood transfusion</topic><topic>Bone marrow</topic><topic>Cancer Research</topic><topic>Cells (biology)</topic><topic>Children</topic><topic>CRISPR</topic><topic>DNA nucleotidylexotransferase</topic><topic>Editing</topic><topic>GATA-1 protein</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genotypes</topic><topic>HBB gene</topic><topic>Hematopoietic stem cells</topic><topic>Hemoglobin</topic><topic>Hemoglobinopathy</topic><topic>Infectious Diseases</topic><topic>Leukocytes (mononuclear)</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Peripheral blood mononuclear cells</topic><topic>Point mutation</topic><topic>Progenitor cells</topic><topic>Side effects</topic><topic>Thalassemia</topic><topic>Transcriptomes</topic><topic>Transfusion</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Liao, Jiaoyang</creatorcontrib><creatorcontrib>Chen, Shuanghong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Qiudao</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Hsiao, Shenlin</creatorcontrib><creatorcontrib>Jiang, Yanhong</creatorcontrib><creatorcontrib>Wang, Liren</creatorcontrib><creatorcontrib>Chen, Fangping</creatorcontrib><creatorcontrib>Zhang, Yuanjin</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Li, Dali</creatorcontrib><creatorcontrib>Liu, Mingyao</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Bin</au><au>Liao, Jiaoyang</au><au>Chen, Shuanghong</au><au>Li, Wei</au><au>Wang, Qiudao</au><au>Hu, Jian</au><au>Yang, Fei</au><au>Hsiao, Shenlin</au><au>Jiang, Yanhong</au><au>Wang, Liren</au><au>Chen, Fangping</au><au>Zhang, Yuanjin</au><au>Wang, Xin</au><au>Li, Dali</au><au>Liu, Mingyao</au><au>Wu, Yuxuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>28</volume><issue>8</issue><spage>1573</spage><epage>1580</epage><pages>1573-1580</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Gene editing to disrupt the GATA1-binding site at the +58
BCL11A
erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by
HBB
gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted
BCL11A
enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β
0
/β
0
genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl
−1
at screening to 15.0 and 14.0 g dl
−1
at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9
BCL11A
-edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><doi>10.1038/s41591-022-01906-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7339-5048</orcidid><orcidid>https://orcid.org/0000-0002-9155-9883</orcidid><orcidid>https://orcid.org/0000-0002-3119-7497</orcidid><orcidid>https://orcid.org/0000-0003-3512-7055</orcidid><orcidid>https://orcid.org/0000-0001-8079-8638</orcidid><orcidid>https://orcid.org/0000-0002-0046-8493</orcidid><orcidid>https://orcid.org/0000-0002-0443-563X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2022-08, Vol.28 (8), p.1573-1580 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_2698629690 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/532/1542 631/61/201/2110 631/61/2320 692/699/1541/13 Autografts Binding sites Biomedical and Life Sciences Biomedicine Blood diseases Blood transfusion Bone marrow Cancer Research Cells (biology) Children CRISPR DNA nucleotidylexotransferase Editing GATA-1 protein Genetic modification Genome editing Genotypes HBB gene Hematopoietic stem cells Hemoglobin Hemoglobinopathy Infectious Diseases Leukocytes (mononuclear) Metabolic Diseases Molecular Medicine Mutation Neurosciences Patients Pediatrics Peripheral blood mononuclear cells Point mutation Progenitor cells Side effects Thalassemia Transcriptomes Transfusion Transplantation |
title | CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%E2%80%93Cas9-mediated%20gene%20editing%20of%20the%20BCL11A%20enhancer%20for%20pediatric%20%CE%B20/%CE%B20%20transfusion-dependent%20%CE%B2-thalassemia&rft.jtitle=Nature%20medicine&rft.au=Fu,%20Bin&rft.date=2022-08-01&rft.volume=28&rft.issue=8&rft.spage=1573&rft.epage=1580&rft.pages=1573-1580&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-022-01906-z&rft_dat=%3Cproquest_cross%3E2698629690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703694604&rft_id=info:pmid/&rfr_iscdi=true |