CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia

Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2022-08, Vol.28 (8), p.1573-1580
Hauptverfasser: Fu, Bin, Liao, Jiaoyang, Chen, Shuanghong, Li, Wei, Wang, Qiudao, Hu, Jian, Yang, Fei, Hsiao, Shenlin, Jiang, Yanhong, Wang, Liren, Chen, Fangping, Zhang, Yuanjin, Wang, Xin, Li, Dali, Liu, Mingyao, Wu, Yuxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1580
container_issue 8
container_start_page 1573
container_title Nature medicine
container_volume 28
creator Fu, Bin
Liao, Jiaoyang
Chen, Shuanghong
Li, Wei
Wang, Qiudao
Hu, Jian
Yang, Fei
Hsiao, Shenlin
Jiang, Yanhong
Wang, Liren
Chen, Fangping
Zhang, Yuanjin
Wang, Xin
Li, Dali
Liu, Mingyao
Wu, Yuxuan
description Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β 0 /β 0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl −1 at screening to 15.0 and 14.0 g dl −1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy. Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9 BCL11A -edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.
doi_str_mv 10.1038/s41591-022-01906-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2698629690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698629690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</originalsourceid><addsrcrecordid>eNp9kUtKxEAQhoMo-LyAqwY3blqrH-mklxp8wYDiA9w1naQyk2GmM3YnC115B2_iQTyEJ7GdEQQXLoqqor7_p-BPkn0GRwxEfhwkSzWjwDkFpkHRl7Vki6VSUZbB43qcIctprlO1mWyHMAUAAaneSobi9uru5vbz9a2wQdM51q3tsSZjdEji0rduTLqG9BMkp8WIsROCbmJdhZ40nSeLpcC3Ffl4h-NYpPfWhWYIbedojQt0Nbo-Xmk_sTMbAs5bu5tsNHYWcO-n7yQP52f3xSUdXV9cFScjWvGc95SDalJV8zoHK1DWWuZlwyRwLXX8HmwpUOQZijq1pa0UqAwbnkImWQlVycVOcrjyXfjuacDQm3kbKpzNrMNuCIYrnSuulYaIHvxBp93gXfzO8AyE0lKBjBRfUZXvQvDYmIVv59Y_GwbmOwmzSsLEJMwyCfMSRWIlChF2Y_S_1v-ovgAfC44I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703694604</pqid></control><display><type>article</type><title>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Bin ; Liao, Jiaoyang ; Chen, Shuanghong ; Li, Wei ; Wang, Qiudao ; Hu, Jian ; Yang, Fei ; Hsiao, Shenlin ; Jiang, Yanhong ; Wang, Liren ; Chen, Fangping ; Zhang, Yuanjin ; Wang, Xin ; Li, Dali ; Liu, Mingyao ; Wu, Yuxuan</creator><creatorcontrib>Fu, Bin ; Liao, Jiaoyang ; Chen, Shuanghong ; Li, Wei ; Wang, Qiudao ; Hu, Jian ; Yang, Fei ; Hsiao, Shenlin ; Jiang, Yanhong ; Wang, Liren ; Chen, Fangping ; Zhang, Yuanjin ; Wang, Xin ; Li, Dali ; Liu, Mingyao ; Wu, Yuxuan</creatorcontrib><description>Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β 0 /β 0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for &gt;18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl −1 at screening to 15.0 and 14.0 g dl −1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy. Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9 BCL11A -edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-022-01906-z</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/532/1542 ; 631/61/201/2110 ; 631/61/2320 ; 692/699/1541/13 ; Autografts ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Blood diseases ; Blood transfusion ; Bone marrow ; Cancer Research ; Cells (biology) ; Children ; CRISPR ; DNA nucleotidylexotransferase ; Editing ; GATA-1 protein ; Genetic modification ; Genome editing ; Genotypes ; HBB gene ; Hematopoietic stem cells ; Hemoglobin ; Hemoglobinopathy ; Infectious Diseases ; Leukocytes (mononuclear) ; Metabolic Diseases ; Molecular Medicine ; Mutation ; Neurosciences ; Patients ; Pediatrics ; Peripheral blood mononuclear cells ; Point mutation ; Progenitor cells ; Side effects ; Thalassemia ; Transcriptomes ; Transfusion ; Transplantation</subject><ispartof>Nature medicine, 2022-08, Vol.28 (8), p.1573-1580</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</citedby><cites>FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</cites><orcidid>0000-0001-7339-5048 ; 0000-0002-9155-9883 ; 0000-0002-3119-7497 ; 0000-0003-3512-7055 ; 0000-0001-8079-8638 ; 0000-0002-0046-8493 ; 0000-0002-0443-563X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-022-01906-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-022-01906-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Liao, Jiaoyang</creatorcontrib><creatorcontrib>Chen, Shuanghong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Qiudao</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Hsiao, Shenlin</creatorcontrib><creatorcontrib>Jiang, Yanhong</creatorcontrib><creatorcontrib>Wang, Liren</creatorcontrib><creatorcontrib>Chen, Fangping</creatorcontrib><creatorcontrib>Zhang, Yuanjin</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Li, Dali</creatorcontrib><creatorcontrib>Liu, Mingyao</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><title>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><description>Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β 0 /β 0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for &gt;18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl −1 at screening to 15.0 and 14.0 g dl −1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy. Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9 BCL11A -edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.</description><subject>631/532/1542</subject><subject>631/61/201/2110</subject><subject>631/61/2320</subject><subject>692/699/1541/13</subject><subject>Autografts</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood diseases</subject><subject>Blood transfusion</subject><subject>Bone marrow</subject><subject>Cancer Research</subject><subject>Cells (biology)</subject><subject>Children</subject><subject>CRISPR</subject><subject>DNA nucleotidylexotransferase</subject><subject>Editing</subject><subject>GATA-1 protein</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genotypes</subject><subject>HBB gene</subject><subject>Hematopoietic stem cells</subject><subject>Hemoglobin</subject><subject>Hemoglobinopathy</subject><subject>Infectious Diseases</subject><subject>Leukocytes (mononuclear)</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Peripheral blood mononuclear cells</subject><subject>Point mutation</subject><subject>Progenitor cells</subject><subject>Side effects</subject><subject>Thalassemia</subject><subject>Transcriptomes</subject><subject>Transfusion</subject><subject>Transplantation</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtKxEAQhoMo-LyAqwY3blqrH-mklxp8wYDiA9w1naQyk2GmM3YnC115B2_iQTyEJ7GdEQQXLoqqor7_p-BPkn0GRwxEfhwkSzWjwDkFpkHRl7Vki6VSUZbB43qcIctprlO1mWyHMAUAAaneSobi9uru5vbz9a2wQdM51q3tsSZjdEji0rduTLqG9BMkp8WIsROCbmJdhZ40nSeLpcC3Ffl4h-NYpPfWhWYIbedojQt0Nbo-Xmk_sTMbAs5bu5tsNHYWcO-n7yQP52f3xSUdXV9cFScjWvGc95SDalJV8zoHK1DWWuZlwyRwLXX8HmwpUOQZijq1pa0UqAwbnkImWQlVycVOcrjyXfjuacDQm3kbKpzNrMNuCIYrnSuulYaIHvxBp93gXfzO8AyE0lKBjBRfUZXvQvDYmIVv59Y_GwbmOwmzSsLEJMwyCfMSRWIlChF2Y_S_1v-ovgAfC44I</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fu, Bin</creator><creator>Liao, Jiaoyang</creator><creator>Chen, Shuanghong</creator><creator>Li, Wei</creator><creator>Wang, Qiudao</creator><creator>Hu, Jian</creator><creator>Yang, Fei</creator><creator>Hsiao, Shenlin</creator><creator>Jiang, Yanhong</creator><creator>Wang, Liren</creator><creator>Chen, Fangping</creator><creator>Zhang, Yuanjin</creator><creator>Wang, Xin</creator><creator>Li, Dali</creator><creator>Liu, Mingyao</creator><creator>Wu, Yuxuan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7339-5048</orcidid><orcidid>https://orcid.org/0000-0002-9155-9883</orcidid><orcidid>https://orcid.org/0000-0002-3119-7497</orcidid><orcidid>https://orcid.org/0000-0003-3512-7055</orcidid><orcidid>https://orcid.org/0000-0001-8079-8638</orcidid><orcidid>https://orcid.org/0000-0002-0046-8493</orcidid><orcidid>https://orcid.org/0000-0002-0443-563X</orcidid></search><sort><creationdate>20220801</creationdate><title>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</title><author>Fu, Bin ; Liao, Jiaoyang ; Chen, Shuanghong ; Li, Wei ; Wang, Qiudao ; Hu, Jian ; Yang, Fei ; Hsiao, Shenlin ; Jiang, Yanhong ; Wang, Liren ; Chen, Fangping ; Zhang, Yuanjin ; Wang, Xin ; Li, Dali ; Liu, Mingyao ; Wu, Yuxuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-206f56d2d80a3e4d948bf14029490590ab3e387e3d5abac6067ef250741b0cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/532/1542</topic><topic>631/61/201/2110</topic><topic>631/61/2320</topic><topic>692/699/1541/13</topic><topic>Autografts</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood diseases</topic><topic>Blood transfusion</topic><topic>Bone marrow</topic><topic>Cancer Research</topic><topic>Cells (biology)</topic><topic>Children</topic><topic>CRISPR</topic><topic>DNA nucleotidylexotransferase</topic><topic>Editing</topic><topic>GATA-1 protein</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genotypes</topic><topic>HBB gene</topic><topic>Hematopoietic stem cells</topic><topic>Hemoglobin</topic><topic>Hemoglobinopathy</topic><topic>Infectious Diseases</topic><topic>Leukocytes (mononuclear)</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Peripheral blood mononuclear cells</topic><topic>Point mutation</topic><topic>Progenitor cells</topic><topic>Side effects</topic><topic>Thalassemia</topic><topic>Transcriptomes</topic><topic>Transfusion</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Liao, Jiaoyang</creatorcontrib><creatorcontrib>Chen, Shuanghong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Qiudao</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Hsiao, Shenlin</creatorcontrib><creatorcontrib>Jiang, Yanhong</creatorcontrib><creatorcontrib>Wang, Liren</creatorcontrib><creatorcontrib>Chen, Fangping</creatorcontrib><creatorcontrib>Zhang, Yuanjin</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Li, Dali</creatorcontrib><creatorcontrib>Liu, Mingyao</creatorcontrib><creatorcontrib>Wu, Yuxuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Bin</au><au>Liao, Jiaoyang</au><au>Chen, Shuanghong</au><au>Li, Wei</au><au>Wang, Qiudao</au><au>Hu, Jian</au><au>Yang, Fei</au><au>Hsiao, Shenlin</au><au>Jiang, Yanhong</au><au>Wang, Liren</au><au>Chen, Fangping</au><au>Zhang, Yuanjin</au><au>Wang, Xin</au><au>Li, Dali</au><au>Liu, Mingyao</au><au>Wu, Yuxuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>28</volume><issue>8</issue><spage>1573</spage><epage>1580</epage><pages>1573-1580</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β 0 /β 0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for &gt;18 months after treatment, and their Hb increased from 8.2 and 10.8 g dl −1 at screening to 15.0 and 14.0 g dl −1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy. Preliminary results from a phase 1/2 trial with 18-month follow-up show that transplantation of CRISPR–Cas9 BCL11A -edited autologous hematopoietic cells in two children with β-thalassemia was safe and achieved transfusion independence.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><doi>10.1038/s41591-022-01906-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7339-5048</orcidid><orcidid>https://orcid.org/0000-0002-9155-9883</orcidid><orcidid>https://orcid.org/0000-0002-3119-7497</orcidid><orcidid>https://orcid.org/0000-0003-3512-7055</orcidid><orcidid>https://orcid.org/0000-0001-8079-8638</orcidid><orcidid>https://orcid.org/0000-0002-0046-8493</orcidid><orcidid>https://orcid.org/0000-0002-0443-563X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2022-08, Vol.28 (8), p.1573-1580
issn 1078-8956
1546-170X
language eng
recordid cdi_proquest_miscellaneous_2698629690
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/532/1542
631/61/201/2110
631/61/2320
692/699/1541/13
Autografts
Binding sites
Biomedical and Life Sciences
Biomedicine
Blood diseases
Blood transfusion
Bone marrow
Cancer Research
Cells (biology)
Children
CRISPR
DNA nucleotidylexotransferase
Editing
GATA-1 protein
Genetic modification
Genome editing
Genotypes
HBB gene
Hematopoietic stem cells
Hemoglobin
Hemoglobinopathy
Infectious Diseases
Leukocytes (mononuclear)
Metabolic Diseases
Molecular Medicine
Mutation
Neurosciences
Patients
Pediatrics
Peripheral blood mononuclear cells
Point mutation
Progenitor cells
Side effects
Thalassemia
Transcriptomes
Transfusion
Transplantation
title CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%E2%80%93Cas9-mediated%20gene%20editing%20of%20the%20BCL11A%20enhancer%20for%20pediatric%20%CE%B20/%CE%B20%20transfusion-dependent%20%CE%B2-thalassemia&rft.jtitle=Nature%20medicine&rft.au=Fu,%20Bin&rft.date=2022-08-01&rft.volume=28&rft.issue=8&rft.spage=1573&rft.epage=1580&rft.pages=1573-1580&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-022-01906-z&rft_dat=%3Cproquest_cross%3E2698629690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703694604&rft_id=info:pmid/&rfr_iscdi=true