Structures and mechanisms of the Arabidopsis auxin transporter PIN3
The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development 1 , 2 . Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-ace...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-09, Vol.609 (7927), p.616-621 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 7927 |
container_start_page | 616 |
container_title | Nature (London) |
container_volume | 609 |
creator | Su, Nannan Zhu, Aiqin Tao, Xin Ding, Zhong Jie Chang, Shenghai Ye, Fan Zhang, Yan Zhao, Cheng Chen, Qian Wang, Jiangqin Zhou, Chen Yu Guo, Yirong Jiao, Shasha Zhang, Sufen Wen, Han Ma, Lixin Ye, Sheng Zheng, Shao Jian Yang, Fan Wu, Shan Guo, Jiangtao |
description | The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development
1
,
2
. Here we present cryo-electron microscopy structures of PIN3 from
Arabidopsis thaliana
in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor
N
-1-naphthylphthalamic acid (NPA).
A. thaliana
PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up–down rigid-body motions and the dimerized scaffold domains remain static.
Arabidopsis thaliana
PIN3 structures reveal the molecular mechanisms of the transport of indole-3-acetic acid and the inhibition of polar auxin transport by
N
-1-naphthylphthalamic acid. |
doi_str_mv | 10.1038/s41586-022-05142-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2697675984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715493398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a107b623218d2949a2e5ad24f76c7b934832cf62cfd58b757a448b26ae17747c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcBN26ieTVJl8PgY2BQQV2HNE2dDtOHuS3qvzdaQXDh4nI23zlcPoROGb1gVJhLkCwzilDOCc2Y5ORtD82Y1IpIZfQ-mlHKDaFGqEN0BLClNGFaztDycYijH8YYALu2xE3wG9fW0ADuKjxsAl5EV9Rl10OdiPG9bvEQXQt9F4cQ8cPqThyjg8rtIJz85Bw9X189LW_J-v5mtVysiZfMDMQxqgvFBWem5LnMHQ-ZK7mstPK6yIU0gvtKpSszU-hMOylNwZULTGupvZij82m3j93rGGCwTQ0-7HauDd0IlqtcK53lRib07A-67cbYpu8s1yyTuRC5SRSfKB87gBgq28e6cfHDMmq_vNrJq01e7bdX-5ZKYipBgtuXEH-n_2l9AllYejY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715493398</pqid></control><display><type>article</type><title>Structures and mechanisms of the Arabidopsis auxin transporter PIN3</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Su, Nannan ; Zhu, Aiqin ; Tao, Xin ; Ding, Zhong Jie ; Chang, Shenghai ; Ye, Fan ; Zhang, Yan ; Zhao, Cheng ; Chen, Qian ; Wang, Jiangqin ; Zhou, Chen Yu ; Guo, Yirong ; Jiao, Shasha ; Zhang, Sufen ; Wen, Han ; Ma, Lixin ; Ye, Sheng ; Zheng, Shao Jian ; Yang, Fan ; Wu, Shan ; Guo, Jiangtao</creator><creatorcontrib>Su, Nannan ; Zhu, Aiqin ; Tao, Xin ; Ding, Zhong Jie ; Chang, Shenghai ; Ye, Fan ; Zhang, Yan ; Zhao, Cheng ; Chen, Qian ; Wang, Jiangqin ; Zhou, Chen Yu ; Guo, Yirong ; Jiao, Shasha ; Zhang, Sufen ; Wen, Han ; Ma, Lixin ; Ye, Sheng ; Zheng, Shao Jian ; Yang, Fan ; Wu, Shan ; Guo, Jiangtao</creatorcontrib><description>The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development
1
,
2
. Here we present cryo-electron microscopy structures of PIN3 from
Arabidopsis thaliana
in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor
N
-1-naphthylphthalamic acid (NPA).
A. thaliana
PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up–down rigid-body motions and the dimerized scaffold domains remain static.
Arabidopsis thaliana
PIN3 structures reveal the molecular mechanisms of the transport of indole-3-acetic acid and the inhibition of polar auxin transport by
N
-1-naphthylphthalamic acid.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05142-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 14 ; 14/35 ; 631/449/1741/1576 ; 631/449/2653 ; 631/449/2675 ; 631/535/1258/1259 ; 631/57/2283 ; 82 ; 82/103 ; 82/83 ; Acetic acid ; Acids ; Auxins ; Binding sites ; Biochemistry ; Computer applications ; Dimerization ; Domains ; Electron microscopy ; Helices ; Humanities and Social Sciences ; Indoleacetic acid ; Kinases ; Localization ; Microscopy ; multidisciplinary ; N-1-naphthylphthalamic acid ; Phosphorylation ; Plant growth ; Protein transport ; Rigid-body dynamics ; Scaffolds ; Science ; Science (multidisciplinary) ; Structure-function relationships ; Substrate inhibition</subject><ispartof>Nature (London), 2022-09, Vol.609 (7927), p.616-621</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Sep 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a107b623218d2949a2e5ad24f76c7b934832cf62cfd58b757a448b26ae17747c3</citedby><cites>FETCH-LOGICAL-c418t-a107b623218d2949a2e5ad24f76c7b934832cf62cfd58b757a448b26ae17747c3</cites><orcidid>0000-0002-0889-1368 ; 0000-0002-4938-4741 ; 0000-0003-4643-3453 ; 0000-0002-3336-8165 ; 0000-0003-1518-5143 ; 0000-0002-8737-0412 ; 0000-0002-8850-286X ; 0000-0002-4736-4755 ; 0000-0002-0520-5254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05142-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05142-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Su, Nannan</creatorcontrib><creatorcontrib>Zhu, Aiqin</creatorcontrib><creatorcontrib>Tao, Xin</creatorcontrib><creatorcontrib>Ding, Zhong Jie</creatorcontrib><creatorcontrib>Chang, Shenghai</creatorcontrib><creatorcontrib>Ye, Fan</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Wang, Jiangqin</creatorcontrib><creatorcontrib>Zhou, Chen Yu</creatorcontrib><creatorcontrib>Guo, Yirong</creatorcontrib><creatorcontrib>Jiao, Shasha</creatorcontrib><creatorcontrib>Zhang, Sufen</creatorcontrib><creatorcontrib>Wen, Han</creatorcontrib><creatorcontrib>Ma, Lixin</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Zheng, Shao Jian</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Guo, Jiangtao</creatorcontrib><title>Structures and mechanisms of the Arabidopsis auxin transporter PIN3</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development
1
,
2
. Here we present cryo-electron microscopy structures of PIN3 from
Arabidopsis thaliana
in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor
N
-1-naphthylphthalamic acid (NPA).
A. thaliana
PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up–down rigid-body motions and the dimerized scaffold domains remain static.
Arabidopsis thaliana
PIN3 structures reveal the molecular mechanisms of the transport of indole-3-acetic acid and the inhibition of polar auxin transport by
N
-1-naphthylphthalamic acid.</description><subject>101/28</subject><subject>14</subject><subject>14/35</subject><subject>631/449/1741/1576</subject><subject>631/449/2653</subject><subject>631/449/2675</subject><subject>631/535/1258/1259</subject><subject>631/57/2283</subject><subject>82</subject><subject>82/103</subject><subject>82/83</subject><subject>Acetic acid</subject><subject>Acids</subject><subject>Auxins</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Computer applications</subject><subject>Dimerization</subject><subject>Domains</subject><subject>Electron microscopy</subject><subject>Helices</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic acid</subject><subject>Kinases</subject><subject>Localization</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>N-1-naphthylphthalamic acid</subject><subject>Phosphorylation</subject><subject>Plant growth</subject><subject>Protein transport</subject><subject>Rigid-body dynamics</subject><subject>Scaffolds</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure-function relationships</subject><subject>Substrate inhibition</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcBN26ieTVJl8PgY2BQQV2HNE2dDtOHuS3qvzdaQXDh4nI23zlcPoROGb1gVJhLkCwzilDOCc2Y5ORtD82Y1IpIZfQ-mlHKDaFGqEN0BLClNGFaztDycYijH8YYALu2xE3wG9fW0ADuKjxsAl5EV9Rl10OdiPG9bvEQXQt9F4cQ8cPqThyjg8rtIJz85Bw9X189LW_J-v5mtVysiZfMDMQxqgvFBWem5LnMHQ-ZK7mstPK6yIU0gvtKpSszU-hMOylNwZULTGupvZij82m3j93rGGCwTQ0-7HauDd0IlqtcK53lRib07A-67cbYpu8s1yyTuRC5SRSfKB87gBgq28e6cfHDMmq_vNrJq01e7bdX-5ZKYipBgtuXEH-n_2l9AllYejY</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Su, Nannan</creator><creator>Zhu, Aiqin</creator><creator>Tao, Xin</creator><creator>Ding, Zhong Jie</creator><creator>Chang, Shenghai</creator><creator>Ye, Fan</creator><creator>Zhang, Yan</creator><creator>Zhao, Cheng</creator><creator>Chen, Qian</creator><creator>Wang, Jiangqin</creator><creator>Zhou, Chen Yu</creator><creator>Guo, Yirong</creator><creator>Jiao, Shasha</creator><creator>Zhang, Sufen</creator><creator>Wen, Han</creator><creator>Ma, Lixin</creator><creator>Ye, Sheng</creator><creator>Zheng, Shao Jian</creator><creator>Yang, Fan</creator><creator>Wu, Shan</creator><creator>Guo, Jiangtao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0889-1368</orcidid><orcidid>https://orcid.org/0000-0002-4938-4741</orcidid><orcidid>https://orcid.org/0000-0003-4643-3453</orcidid><orcidid>https://orcid.org/0000-0002-3336-8165</orcidid><orcidid>https://orcid.org/0000-0003-1518-5143</orcidid><orcidid>https://orcid.org/0000-0002-8737-0412</orcidid><orcidid>https://orcid.org/0000-0002-8850-286X</orcidid><orcidid>https://orcid.org/0000-0002-4736-4755</orcidid><orcidid>https://orcid.org/0000-0002-0520-5254</orcidid></search><sort><creationdate>20220915</creationdate><title>Structures and mechanisms of the Arabidopsis auxin transporter PIN3</title><author>Su, Nannan ; Zhu, Aiqin ; Tao, Xin ; Ding, Zhong Jie ; Chang, Shenghai ; Ye, Fan ; Zhang, Yan ; Zhao, Cheng ; Chen, Qian ; Wang, Jiangqin ; Zhou, Chen Yu ; Guo, Yirong ; Jiao, Shasha ; Zhang, Sufen ; Wen, Han ; Ma, Lixin ; Ye, Sheng ; Zheng, Shao Jian ; Yang, Fan ; Wu, Shan ; Guo, Jiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a107b623218d2949a2e5ad24f76c7b934832cf62cfd58b757a448b26ae17747c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>101/28</topic><topic>14</topic><topic>14/35</topic><topic>631/449/1741/1576</topic><topic>631/449/2653</topic><topic>631/449/2675</topic><topic>631/535/1258/1259</topic><topic>631/57/2283</topic><topic>82</topic><topic>82/103</topic><topic>82/83</topic><topic>Acetic acid</topic><topic>Acids</topic><topic>Auxins</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Computer applications</topic><topic>Dimerization</topic><topic>Domains</topic><topic>Electron microscopy</topic><topic>Helices</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic acid</topic><topic>Kinases</topic><topic>Localization</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>N-1-naphthylphthalamic acid</topic><topic>Phosphorylation</topic><topic>Plant growth</topic><topic>Protein transport</topic><topic>Rigid-body dynamics</topic><topic>Scaffolds</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure-function relationships</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Nannan</creatorcontrib><creatorcontrib>Zhu, Aiqin</creatorcontrib><creatorcontrib>Tao, Xin</creatorcontrib><creatorcontrib>Ding, Zhong Jie</creatorcontrib><creatorcontrib>Chang, Shenghai</creatorcontrib><creatorcontrib>Ye, Fan</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Wang, Jiangqin</creatorcontrib><creatorcontrib>Zhou, Chen Yu</creatorcontrib><creatorcontrib>Guo, Yirong</creatorcontrib><creatorcontrib>Jiao, Shasha</creatorcontrib><creatorcontrib>Zhang, Sufen</creatorcontrib><creatorcontrib>Wen, Han</creatorcontrib><creatorcontrib>Ma, Lixin</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Zheng, Shao Jian</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Guo, Jiangtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Nannan</au><au>Zhu, Aiqin</au><au>Tao, Xin</au><au>Ding, Zhong Jie</au><au>Chang, Shenghai</au><au>Ye, Fan</au><au>Zhang, Yan</au><au>Zhao, Cheng</au><au>Chen, Qian</au><au>Wang, Jiangqin</au><au>Zhou, Chen Yu</au><au>Guo, Yirong</au><au>Jiao, Shasha</au><au>Zhang, Sufen</au><au>Wen, Han</au><au>Ma, Lixin</au><au>Ye, Sheng</au><au>Zheng, Shao Jian</au><au>Yang, Fan</au><au>Wu, Shan</au><au>Guo, Jiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures and mechanisms of the Arabidopsis auxin transporter PIN3</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-09-15</date><risdate>2022</risdate><volume>609</volume><issue>7927</issue><spage>616</spage><epage>621</epage><pages>616-621</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development
1
,
2
. Here we present cryo-electron microscopy structures of PIN3 from
Arabidopsis thaliana
in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor
N
-1-naphthylphthalamic acid (NPA).
A. thaliana
PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up–down rigid-body motions and the dimerized scaffold domains remain static.
Arabidopsis thaliana
PIN3 structures reveal the molecular mechanisms of the transport of indole-3-acetic acid and the inhibition of polar auxin transport by
N
-1-naphthylphthalamic acid.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-022-05142-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0889-1368</orcidid><orcidid>https://orcid.org/0000-0002-4938-4741</orcidid><orcidid>https://orcid.org/0000-0003-4643-3453</orcidid><orcidid>https://orcid.org/0000-0002-3336-8165</orcidid><orcidid>https://orcid.org/0000-0003-1518-5143</orcidid><orcidid>https://orcid.org/0000-0002-8737-0412</orcidid><orcidid>https://orcid.org/0000-0002-8850-286X</orcidid><orcidid>https://orcid.org/0000-0002-4736-4755</orcidid><orcidid>https://orcid.org/0000-0002-0520-5254</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-09, Vol.609 (7927), p.616-621 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2697675984 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 101/28 14 14/35 631/449/1741/1576 631/449/2653 631/449/2675 631/535/1258/1259 631/57/2283 82 82/103 82/83 Acetic acid Acids Auxins Binding sites Biochemistry Computer applications Dimerization Domains Electron microscopy Helices Humanities and Social Sciences Indoleacetic acid Kinases Localization Microscopy multidisciplinary N-1-naphthylphthalamic acid Phosphorylation Plant growth Protein transport Rigid-body dynamics Scaffolds Science Science (multidisciplinary) Structure-function relationships Substrate inhibition |
title | Structures and mechanisms of the Arabidopsis auxin transporter PIN3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20and%20mechanisms%20of%20the%20Arabidopsis%20auxin%20transporter%20PIN3&rft.jtitle=Nature%20(London)&rft.au=Su,%20Nannan&rft.date=2022-09-15&rft.volume=609&rft.issue=7927&rft.spage=616&rft.epage=621&rft.pages=616-621&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05142-w&rft_dat=%3Cproquest_cross%3E2715493398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715493398&rft_id=info:pmid/&rfr_iscdi=true |