Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging

Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2022-12, Vol.41 (12), p.3774-3786
Hauptverfasser: Arslan, M. Tunc, Ozaslan, A. Alper, Kurt, Semih, Muslu, Yavuz, Saritas, Emine Ulku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3786
container_issue 12
container_start_page 3774
container_title IEEE transactions on medical imaging
container_volume 41
creator Arslan, M. Tunc
Ozaslan, A. Alper
Kurt, Semih
Muslu, Yavuz
Saritas, Emine Ulku
description Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, \tau , by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable \tau map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity \tau maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.
doi_str_mv 10.1109/TMI.2022.3195694
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2697674278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9848825</ieee_id><sourcerecordid>2745128029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ff9737f59230b9813c25f21f1dd10183694e0d3f5fd7c47a08f9c07b51cedccd3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFwR-KyEhcuG2b8sbaPIXxFagUKCeJmOV47uGzWqb0R8N_jKlUPnEYa_d7Mm3mEvESYI4J-u7lezSlQOmeoRaf5IzJDIVRLBf_xmMyAStUCdPSCPCvlBgC5AP2UXDChKTKOM7JY22Psm81iu95-a0LKzdoP9o-dYhrbd7b4vlmmobav7X70U3TNV5trGXyzOth9HPfPyZNgh-Jf3NdLsv34YbP83F59-bRaLq5ax4FPbQhaMhnqYgY7rZA5KgLFgH2PgIpV9x56FkTopePSggragdwJdL53rmeXpD3PLb_98bQzxxwPNv81yUbzPn5fmJT35tf00zDKWIeVf3PmjzndnnyZzCEW54fBjj6diqGdlp3k9UUVff0fepNOeazXGCq5QKqA6krBmXI5lZJ9eLCAYO7iMDUOcxeHuY-jSl6dJdF7_4BrxZWigv0D7_KCGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745128029</pqid></control><display><type>article</type><title>Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Arslan, M. Tunc ; Ozaslan, A. Alper ; Kurt, Semih ; Muslu, Yavuz ; Saritas, Emine Ulku</creator><creatorcontrib>Arslan, M. Tunc ; Ozaslan, A. Alper ; Kurt, Semih ; Muslu, Yavuz ; Saritas, Emine Ulku</creatorcontrib><description><![CDATA[Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula>, by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.]]></description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3195694</identifier><identifier>PMID: 35921341</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Calibration ; Color ; color MPI ; Computational modeling ; Distortion ; Estimates ; Estimation ; Harmonic response ; Image color analysis ; Magnetic induction ; Magnetic particle imaging ; Medical imaging ; mirror symmetry ; Mirrors ; nanoparticle relaxation ; Nanoparticles ; Nonlinear response ; rapid trajectory ; Relaxation time ; Scanning ; Symmetry ; Time constant ; Trajectory ; x-space MPI</subject><ispartof>IEEE transactions on medical imaging, 2022-12, Vol.41 (12), p.3774-3786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-ff9737f59230b9813c25f21f1dd10183694e0d3f5fd7c47a08f9c07b51cedccd3</citedby><cites>FETCH-LOGICAL-c404t-ff9737f59230b9813c25f21f1dd10183694e0d3f5fd7c47a08f9c07b51cedccd3</cites><orcidid>0000-0002-2369-3378 ; 0000-0003-4067-2904 ; 0000-0002-9760-9140 ; 0000-0001-8551-1077 ; 0000-0001-6698-838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9848825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9848825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323361$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Arslan, M. Tunc</creatorcontrib><creatorcontrib>Ozaslan, A. Alper</creatorcontrib><creatorcontrib>Kurt, Semih</creatorcontrib><creatorcontrib>Muslu, Yavuz</creatorcontrib><creatorcontrib>Saritas, Emine Ulku</creatorcontrib><title>Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description><![CDATA[Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula>, by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.]]></description><subject>Calibration</subject><subject>Color</subject><subject>color MPI</subject><subject>Computational modeling</subject><subject>Distortion</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Harmonic response</subject><subject>Image color analysis</subject><subject>Magnetic induction</subject><subject>Magnetic particle imaging</subject><subject>Medical imaging</subject><subject>mirror symmetry</subject><subject>Mirrors</subject><subject>nanoparticle relaxation</subject><subject>Nanoparticles</subject><subject>Nonlinear response</subject><subject>rapid trajectory</subject><subject>Relaxation time</subject><subject>Scanning</subject><subject>Symmetry</subject><subject>Time constant</subject><subject>Trajectory</subject><subject>x-space MPI</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1vEzEQxS0EoqFwR-KyEhcuG2b8sbaPIXxFagUKCeJmOV47uGzWqb0R8N_jKlUPnEYa_d7Mm3mEvESYI4J-u7lezSlQOmeoRaf5IzJDIVRLBf_xmMyAStUCdPSCPCvlBgC5AP2UXDChKTKOM7JY22Psm81iu95-a0LKzdoP9o-dYhrbd7b4vlmmobav7X70U3TNV5trGXyzOth9HPfPyZNgh-Jf3NdLsv34YbP83F59-bRaLq5ax4FPbQhaMhnqYgY7rZA5KgLFgH2PgIpV9x56FkTopePSggragdwJdL53rmeXpD3PLb_98bQzxxwPNv81yUbzPn5fmJT35tf00zDKWIeVf3PmjzndnnyZzCEW54fBjj6diqGdlp3k9UUVff0fepNOeazXGCq5QKqA6krBmXI5lZJ9eLCAYO7iMDUOcxeHuY-jSl6dJdF7_4BrxZWigv0D7_KCGA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Arslan, M. Tunc</creator><creator>Ozaslan, A. Alper</creator><creator>Kurt, Semih</creator><creator>Muslu, Yavuz</creator><creator>Saritas, Emine Ulku</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-2369-3378</orcidid><orcidid>https://orcid.org/0000-0003-4067-2904</orcidid><orcidid>https://orcid.org/0000-0002-9760-9140</orcidid><orcidid>https://orcid.org/0000-0001-8551-1077</orcidid><orcidid>https://orcid.org/0000-0001-6698-838X</orcidid></search><sort><creationdate>20221201</creationdate><title>Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging</title><author>Arslan, M. Tunc ; Ozaslan, A. Alper ; Kurt, Semih ; Muslu, Yavuz ; Saritas, Emine Ulku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ff9737f59230b9813c25f21f1dd10183694e0d3f5fd7c47a08f9c07b51cedccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Color</topic><topic>color MPI</topic><topic>Computational modeling</topic><topic>Distortion</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Harmonic response</topic><topic>Image color analysis</topic><topic>Magnetic induction</topic><topic>Magnetic particle imaging</topic><topic>Medical imaging</topic><topic>mirror symmetry</topic><topic>Mirrors</topic><topic>nanoparticle relaxation</topic><topic>Nanoparticles</topic><topic>Nonlinear response</topic><topic>rapid trajectory</topic><topic>Relaxation time</topic><topic>Scanning</topic><topic>Symmetry</topic><topic>Time constant</topic><topic>Trajectory</topic><topic>x-space MPI</topic><toplevel>online_resources</toplevel><creatorcontrib>Arslan, M. Tunc</creatorcontrib><creatorcontrib>Ozaslan, A. Alper</creatorcontrib><creatorcontrib>Kurt, Semih</creatorcontrib><creatorcontrib>Muslu, Yavuz</creatorcontrib><creatorcontrib>Saritas, Emine Ulku</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arslan, M. Tunc</au><au>Ozaslan, A. Alper</au><au>Kurt, Semih</au><au>Muslu, Yavuz</au><au>Saritas, Emine Ulku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>12</issue><spage>3774</spage><epage>3786</epage><pages>3774-3786</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract><![CDATA[Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula>, by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.]]></abstract><cop>New York</cop><pub>IEEE</pub><pmid>35921341</pmid><doi>10.1109/TMI.2022.3195694</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2369-3378</orcidid><orcidid>https://orcid.org/0000-0003-4067-2904</orcidid><orcidid>https://orcid.org/0000-0002-9760-9140</orcidid><orcidid>https://orcid.org/0000-0001-8551-1077</orcidid><orcidid>https://orcid.org/0000-0001-6698-838X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2022-12, Vol.41 (12), p.3774-3786
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2697674278
source IEEE Electronic Library (IEL)
subjects Calibration
Color
color MPI
Computational modeling
Distortion
Estimates
Estimation
Harmonic response
Image color analysis
Magnetic induction
Magnetic particle imaging
Medical imaging
mirror symmetry
Mirrors
nanoparticle relaxation
Nanoparticles
Nonlinear response
rapid trajectory
Relaxation time
Scanning
Symmetry
Time constant
Trajectory
x-space MPI
title Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20TAURUS%20for%20Relaxation-Based%20Color%20Magnetic%20Particle%20Imaging&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Arslan,%20M.%20Tunc&rft.date=2022-12-01&rft.volume=41&rft.issue=12&rft.spage=3774&rft.epage=3786&rft.pages=3774-3786&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3195694&rft_dat=%3Cproquest_RIE%3E2745128029%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745128029&rft_id=info:pmid/35921341&rft_ieee_id=9848825&rfr_iscdi=true