MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification

Purpose Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer research and clinical oncology 2023-07, Vol.149 (7), p.3287-3299
Hauptverfasser: Chen, Qian, Li, Min, Chen, Chen, Zhou, Panyun, Lv, Xiaoyi, Chen, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3299
container_issue 7
container_start_page 3287
container_title Journal of cancer research and clinical oncology
container_volume 149
creator Chen, Qian
Li, Min
Chen, Chen
Zhou, Panyun
Lv, Xiaoyi
Chen, Cheng
description Purpose Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy. Methods MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data. Results The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet. Conclusions This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.
doi_str_mv 10.1007/s00432-022-04180-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2697672064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831888682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</originalsourceid><addsrcrecordid>eNp9kTlPxDAQhS0EguX4AxTIEg1NwEd8hA4tp8TRQG059gQCSbzEScG_x0sWkCgoLGvmffPG8kNon5JjSog6iYTknGWEpZNTTTK6hmZ02aKci3U0I1TRTDAqt9B2jK8k1UKxTbTFRUF1LsUMxbvzy3sYTrFdLJra2aEOHQ4VbsdmqNvgbYOrMS6bLQwvwePSRvA41fGt7nDd2mfAtvPYNXWX5hvs7WDxECbd2c5Bn0QbY12t_HfRRmWbCHurewc9XV48zq-z24erm_nZbea4EkMmK--Z1TkTlXS8ID6XRe4LJqTlogRXKtDK6bIoqAMCuVOldhW3ylFdSAp8Bx1Nvos-vI8QB9PW0UHT2A7CGA2ThZKKEZkn9PAP-hrGvkuvM0xzqrWWmiWKTZTrQ4w9VGbRpx_oPwwlZhmJmSIxKRLzFYmhaehgZT2WLfifke8MEsAnICape4b-d_c_tp_x3JcO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831888682</pqid></control><display><type>article</type><title>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Qian ; Li, Min ; Chen, Chen ; Zhou, Panyun ; Lv, Xiaoyi ; Chen, Cheng</creator><creatorcontrib>Chen, Qian ; Li, Min ; Chen, Chen ; Zhou, Panyun ; Lv, Xiaoyi ; Chen, Cheng</creatorcontrib><description>Purpose Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy. Methods MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data. Results The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet. Conclusions This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.</description><identifier>ISSN: 0171-5216</identifier><identifier>EISSN: 1432-1335</identifier><identifier>DOI: 10.1007/s00432-022-04180-1</identifier><identifier>PMID: 35918465</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cancer Research ; Clinical Decision-Making ; Decision making ; Diagnosis ; Hematology ; Humans ; Image processing ; Internal Medicine ; Medical diagnosis ; Medicine ; Medicine &amp; Public Health ; Oncology ; Ozone ; Patients ; Physicians ; Reference Values ; Skin - diagnostic imaging ; Skin cancer ; Skin Neoplasms - diagnostic imaging</subject><ispartof>Journal of cancer research and clinical oncology, 2023-07, Vol.149 (7), p.3287-3299</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</citedby><cites>FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00432-022-04180-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00432-022-04180-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35918465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Panyun</creatorcontrib><creatorcontrib>Lv, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><title>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</title><title>Journal of cancer research and clinical oncology</title><addtitle>J Cancer Res Clin Oncol</addtitle><addtitle>J Cancer Res Clin Oncol</addtitle><description>Purpose Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy. Methods MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data. Results The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet. Conclusions This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.</description><subject>Cancer Research</subject><subject>Clinical Decision-Making</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Hematology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Internal Medicine</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>Ozone</subject><subject>Patients</subject><subject>Physicians</subject><subject>Reference Values</subject><subject>Skin - diagnostic imaging</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><issn>0171-5216</issn><issn>1432-1335</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kTlPxDAQhS0EguX4AxTIEg1NwEd8hA4tp8TRQG059gQCSbzEScG_x0sWkCgoLGvmffPG8kNon5JjSog6iYTknGWEpZNTTTK6hmZ02aKci3U0I1TRTDAqt9B2jK8k1UKxTbTFRUF1LsUMxbvzy3sYTrFdLJra2aEOHQ4VbsdmqNvgbYOrMS6bLQwvwePSRvA41fGt7nDd2mfAtvPYNXWX5hvs7WDxECbd2c5Bn0QbY12t_HfRRmWbCHurewc9XV48zq-z24erm_nZbea4EkMmK--Z1TkTlXS8ID6XRe4LJqTlogRXKtDK6bIoqAMCuVOldhW3ylFdSAp8Bx1Nvos-vI8QB9PW0UHT2A7CGA2ThZKKEZkn9PAP-hrGvkuvM0xzqrWWmiWKTZTrQ4w9VGbRpx_oPwwlZhmJmSIxKRLzFYmhaehgZT2WLfifke8MEsAnICape4b-d_c_tp_x3JcO</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Qian</creator><creator>Li, Min</creator><creator>Chen, Chen</creator><creator>Zhou, Panyun</creator><creator>Lv, Xiaoyi</creator><creator>Chen, Cheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20230701</creationdate><title>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</title><author>Chen, Qian ; Li, Min ; Chen, Chen ; Zhou, Panyun ; Lv, Xiaoyi ; Chen, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer Research</topic><topic>Clinical Decision-Making</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Hematology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Internal Medicine</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>Ozone</topic><topic>Patients</topic><topic>Physicians</topic><topic>Reference Values</topic><topic>Skin - diagnostic imaging</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Panyun</creatorcontrib><creatorcontrib>Lv, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cancer research and clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qian</au><au>Li, Min</au><au>Chen, Chen</au><au>Zhou, Panyun</au><au>Lv, Xiaoyi</au><au>Chen, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</atitle><jtitle>Journal of cancer research and clinical oncology</jtitle><stitle>J Cancer Res Clin Oncol</stitle><addtitle>J Cancer Res Clin Oncol</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>149</volume><issue>7</issue><spage>3287</spage><epage>3299</epage><pages>3287-3299</pages><issn>0171-5216</issn><eissn>1432-1335</eissn><abstract>Purpose Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy. Methods MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data. Results The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet. Conclusions This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35918465</pmid><doi>10.1007/s00432-022-04180-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-5216
ispartof Journal of cancer research and clinical oncology, 2023-07, Vol.149 (7), p.3287-3299
issn 0171-5216
1432-1335
language eng
recordid cdi_proquest_miscellaneous_2697672064
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Cancer Research
Clinical Decision-Making
Decision making
Diagnosis
Hematology
Humans
Image processing
Internal Medicine
Medical diagnosis
Medicine
Medicine & Public Health
Oncology
Ozone
Patients
Physicians
Reference Values
Skin - diagnostic imaging
Skin cancer
Skin Neoplasms - diagnostic imaging
title MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDFNet:%20application%20of%20multimodal%20fusion%20method%20based%20on%20skin%20image%20and%20clinical%20data%20to%20skin%20cancer%20classification&rft.jtitle=Journal%20of%20cancer%20research%20and%20clinical%20oncology&rft.au=Chen,%20Qian&rft.date=2023-07-01&rft.volume=149&rft.issue=7&rft.spage=3287&rft.epage=3299&rft.pages=3287-3299&rft.issn=0171-5216&rft.eissn=1432-1335&rft_id=info:doi/10.1007/s00432-022-04180-1&rft_dat=%3Cproquest_cross%3E2831888682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831888682&rft_id=info:pmid/35918465&rfr_iscdi=true