MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification
Purpose Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most in...
Gespeichert in:
Veröffentlicht in: | Journal of cancer research and clinical oncology 2023-07, Vol.149 (7), p.3287-3299 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3299 |
---|---|
container_issue | 7 |
container_start_page | 3287 |
container_title | Journal of cancer research and clinical oncology |
container_volume | 149 |
creator | Chen, Qian Li, Min Chen, Chen Zhou, Panyun Lv, Xiaoyi Chen, Cheng |
description | Purpose
Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy.
Methods
MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data.
Results
The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet.
Conclusions
This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases. |
doi_str_mv | 10.1007/s00432-022-04180-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2697672064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831888682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</originalsourceid><addsrcrecordid>eNp9kTlPxDAQhS0EguX4AxTIEg1NwEd8hA4tp8TRQG059gQCSbzEScG_x0sWkCgoLGvmffPG8kNon5JjSog6iYTknGWEpZNTTTK6hmZ02aKci3U0I1TRTDAqt9B2jK8k1UKxTbTFRUF1LsUMxbvzy3sYTrFdLJra2aEOHQ4VbsdmqNvgbYOrMS6bLQwvwePSRvA41fGt7nDd2mfAtvPYNXWX5hvs7WDxECbd2c5Bn0QbY12t_HfRRmWbCHurewc9XV48zq-z24erm_nZbea4EkMmK--Z1TkTlXS8ID6XRe4LJqTlogRXKtDK6bIoqAMCuVOldhW3ylFdSAp8Bx1Nvos-vI8QB9PW0UHT2A7CGA2ThZKKEZkn9PAP-hrGvkuvM0xzqrWWmiWKTZTrQ4w9VGbRpx_oPwwlZhmJmSIxKRLzFYmhaehgZT2WLfifke8MEsAnICape4b-d_c_tp_x3JcO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831888682</pqid></control><display><type>article</type><title>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Qian ; Li, Min ; Chen, Chen ; Zhou, Panyun ; Lv, Xiaoyi ; Chen, Cheng</creator><creatorcontrib>Chen, Qian ; Li, Min ; Chen, Chen ; Zhou, Panyun ; Lv, Xiaoyi ; Chen, Cheng</creatorcontrib><description>Purpose
Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy.
Methods
MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data.
Results
The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet.
Conclusions
This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.</description><identifier>ISSN: 0171-5216</identifier><identifier>EISSN: 1432-1335</identifier><identifier>DOI: 10.1007/s00432-022-04180-1</identifier><identifier>PMID: 35918465</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cancer Research ; Clinical Decision-Making ; Decision making ; Diagnosis ; Hematology ; Humans ; Image processing ; Internal Medicine ; Medical diagnosis ; Medicine ; Medicine & Public Health ; Oncology ; Ozone ; Patients ; Physicians ; Reference Values ; Skin - diagnostic imaging ; Skin cancer ; Skin Neoplasms - diagnostic imaging</subject><ispartof>Journal of cancer research and clinical oncology, 2023-07, Vol.149 (7), p.3287-3299</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</citedby><cites>FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00432-022-04180-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00432-022-04180-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35918465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Panyun</creatorcontrib><creatorcontrib>Lv, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><title>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</title><title>Journal of cancer research and clinical oncology</title><addtitle>J Cancer Res Clin Oncol</addtitle><addtitle>J Cancer Res Clin Oncol</addtitle><description>Purpose
Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy.
Methods
MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data.
Results
The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet.
Conclusions
This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.</description><subject>Cancer Research</subject><subject>Clinical Decision-Making</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Hematology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Internal Medicine</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oncology</subject><subject>Ozone</subject><subject>Patients</subject><subject>Physicians</subject><subject>Reference Values</subject><subject>Skin - diagnostic imaging</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><issn>0171-5216</issn><issn>1432-1335</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kTlPxDAQhS0EguX4AxTIEg1NwEd8hA4tp8TRQG059gQCSbzEScG_x0sWkCgoLGvmffPG8kNon5JjSog6iYTknGWEpZNTTTK6hmZ02aKci3U0I1TRTDAqt9B2jK8k1UKxTbTFRUF1LsUMxbvzy3sYTrFdLJra2aEOHQ4VbsdmqNvgbYOrMS6bLQwvwePSRvA41fGt7nDd2mfAtvPYNXWX5hvs7WDxECbd2c5Bn0QbY12t_HfRRmWbCHurewc9XV48zq-z24erm_nZbea4EkMmK--Z1TkTlXS8ID6XRe4LJqTlogRXKtDK6bIoqAMCuVOldhW3ylFdSAp8Bx1Nvos-vI8QB9PW0UHT2A7CGA2ThZKKEZkn9PAP-hrGvkuvM0xzqrWWmiWKTZTrQ4w9VGbRpx_oPwwlZhmJmSIxKRLzFYmhaehgZT2WLfifke8MEsAnICape4b-d_c_tp_x3JcO</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Qian</creator><creator>Li, Min</creator><creator>Chen, Chen</creator><creator>Zhou, Panyun</creator><creator>Lv, Xiaoyi</creator><creator>Chen, Cheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20230701</creationdate><title>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</title><author>Chen, Qian ; Li, Min ; Chen, Chen ; Zhou, Panyun ; Lv, Xiaoyi ; Chen, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6fdd2a8425f6c390d4694d9256a35becb7e87c8b991ce0e4c7b8cf3a7c18961e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer Research</topic><topic>Clinical Decision-Making</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Hematology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Internal Medicine</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oncology</topic><topic>Ozone</topic><topic>Patients</topic><topic>Physicians</topic><topic>Reference Values</topic><topic>Skin - diagnostic imaging</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Panyun</creatorcontrib><creatorcontrib>Lv, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cancer research and clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qian</au><au>Li, Min</au><au>Chen, Chen</au><au>Zhou, Panyun</au><au>Lv, Xiaoyi</au><au>Chen, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification</atitle><jtitle>Journal of cancer research and clinical oncology</jtitle><stitle>J Cancer Res Clin Oncol</stitle><addtitle>J Cancer Res Clin Oncol</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>149</volume><issue>7</issue><spage>3287</spage><epage>3299</epage><pages>3287-3299</pages><issn>0171-5216</issn><eissn>1432-1335</eissn><abstract>Purpose
Skin cancer is one of the ten most common cancer types in the world. Early diagnosis and treatment can effectively reduce the mortality of patients. Therefore, it is of great significance to develop an intelligent diagnosis system for skin cancer. According to the survey, at present, most intelligent diagnosis systems of skin cancer only use skin image data, but the multi-modal cross-fusion analysis using image data and patient clinical data is limited. Therefore, to further explore the complementary relationship between image data and patient clinical data, we propose multimode data fusion diagnosis network (MDFNet), a framework for skin cancer based on data fusion strategy.
Methods
MDFNet establishes an effective mapping among heterogeneous data features, effectively fuses clinical skin images and patient clinical data, and effectively solves the problems of feature paucity and insufficient feature richness that only use single-mode data.
Results
The experimental results present that our proposed smart skin cancer diagnosis model has an accuracy of 80.42%, which is an improvement of about 9% compared with the model accuracy using only medical images, thus effectively confirming the unique fusion advantages exhibited by MDFNet.
Conclusions
This illustrates that MDFNet can not only be applied as an effective auxiliary diagnostic tool for skin cancer diagnosis, help physicians improve clinical decision-making ability and effectively improve the efficiency of clinical medicine diagnosis, but also its proposed data fusion method fully exerts the advantage of information convergence and has a certain reference value for the intelligent diagnosis of numerous clinical diseases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35918465</pmid><doi>10.1007/s00432-022-04180-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-5216 |
ispartof | Journal of cancer research and clinical oncology, 2023-07, Vol.149 (7), p.3287-3299 |
issn | 0171-5216 1432-1335 |
language | eng |
recordid | cdi_proquest_miscellaneous_2697672064 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Cancer Research Clinical Decision-Making Decision making Diagnosis Hematology Humans Image processing Internal Medicine Medical diagnosis Medicine Medicine & Public Health Oncology Ozone Patients Physicians Reference Values Skin - diagnostic imaging Skin cancer Skin Neoplasms - diagnostic imaging |
title | MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDFNet:%20application%20of%20multimodal%20fusion%20method%20based%20on%20skin%20image%20and%20clinical%20data%20to%20skin%20cancer%20classification&rft.jtitle=Journal%20of%20cancer%20research%20and%20clinical%20oncology&rft.au=Chen,%20Qian&rft.date=2023-07-01&rft.volume=149&rft.issue=7&rft.spage=3287&rft.epage=3299&rft.pages=3287-3299&rft.issn=0171-5216&rft.eissn=1432-1335&rft_id=info:doi/10.1007/s00432-022-04180-1&rft_dat=%3Cproquest_cross%3E2831888682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831888682&rft_id=info:pmid/35918465&rfr_iscdi=true |