Electromagnetic wave propagation through simulated atmospheric refractivity fields

Large‐eddy simulation (LES) provides three‐dimensional, time‐dependent fields of turbulent refractivity in the atmospheric boundary layer on spatial scales down to a few tens of meters. These fields are directly applicable to the computation of electromagnetic (EM) wave propagation in the megahertz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 1999-11, Vol.34 (6), p.1413-1435
Hauptverfasser: Gilbert, Kenneth E., Di, Xiao, Khanna, Samir, Otte, Martin J., Wyngaard, John C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 6
container_start_page 1413
container_title Radio science
container_volume 34
creator Gilbert, Kenneth E.
Di, Xiao
Khanna, Samir
Otte, Martin J.
Wyngaard, John C.
description Large‐eddy simulation (LES) provides three‐dimensional, time‐dependent fields of turbulent refractivity in the atmospheric boundary layer on spatial scales down to a few tens of meters. These fields are directly applicable to the computation of electromagnetic (EM) wave propagation in the megahertz range but not in the gigahertz range. We present an approximate technique for extending LES refractivity fields to the smaller scales needed for calculating EM propagation at gigahertz frequencies. We demonstrate the technique by computing refractivity fields through 1283 LES, extending them to smaller scales in two dimensions, and using them in a parabolic equation EM propagation model. At 0.263 GHz the very small scale structure in the extended fields has a negligible effect on the predicted EM levels. At 2 GHz, however, it increases the predicted levels by 15–25 dB. We relate these results to the refractivity structure sampled by EM waves at 0.263 and 2 GHz. We also show that at long range an EM field calculated through an LES‐based refractivity field is generally less coherent and significantly weaker than one computed from a “plywood” (i.e., stratified, range‐independent) model of the small‐scale refractivity field. We give a physical explanation for the differences in the EM fields computed in these two ways. Finally, although the plywood model gives results that fit the EM levels observed in the recent Variability of Coastal Atmospheric Refractivity (VOCAR) experiment, it is not physically realistic. The instantaneous top of the atmospheric boundary layer is known to be sharp and horizontally varying, and we show that using such a top also yields a fit to the VOCAR data.
doi_str_mv 10.1029/1999RS900078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26976698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1547861475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3772-f89dd6290bf35b1e027c0dc36388910e3257079b37c636865fb7acc424fb4ec43</originalsourceid><addsrcrecordid>eNp90EFPwjAUB_DGaCKiNz_ATsaD09e1a9ejQUQTggloMF6aruugujFsC8i3dwZjPHF6l9__5b0_QucYrjEk4gYLIcYTAQA8O0AdLCiNuRCvh6gDQLOYMaDH6MT7dwBMU0Y7aNyvjA6uqdVsYYLV0UatTbR0zVLNVLDNIgpz16xm88jbelWpYIpIhbrxy7lxLXemdEoHu7ZhG5XWVIU_RUelqrw5-51d9HLff-49xMOnwWPvdhhrwnkSl5koCpYIyEuS5thAwjUUmjCSZQKDIUnKgYuccM0Iy1ha5lxpTRNa5tRoSrroYre3vfZzZXyQtfXaVJVamGblZcIEZ0xkLbzcC3FKecYw5WlLr3ZUu8b79jm5dLZWbisxyJ-O5f-OW453fGMrs91r5fhuQlNI2ky8y1gfzNdfRrkPyTjhqZyOBnIK45EYsqF8I9_r9o2J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547861475</pqid></control><display><type>article</type><title>Electromagnetic wave propagation through simulated atmospheric refractivity fields</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Gilbert, Kenneth E. ; Di, Xiao ; Khanna, Samir ; Otte, Martin J. ; Wyngaard, John C.</creator><creatorcontrib>Gilbert, Kenneth E. ; Di, Xiao ; Khanna, Samir ; Otte, Martin J. ; Wyngaard, John C.</creatorcontrib><description>Large‐eddy simulation (LES) provides three‐dimensional, time‐dependent fields of turbulent refractivity in the atmospheric boundary layer on spatial scales down to a few tens of meters. These fields are directly applicable to the computation of electromagnetic (EM) wave propagation in the megahertz range but not in the gigahertz range. We present an approximate technique for extending LES refractivity fields to the smaller scales needed for calculating EM propagation at gigahertz frequencies. We demonstrate the technique by computing refractivity fields through 1283 LES, extending them to smaller scales in two dimensions, and using them in a parabolic equation EM propagation model. At 0.263 GHz the very small scale structure in the extended fields has a negligible effect on the predicted EM levels. At 2 GHz, however, it increases the predicted levels by 15–25 dB. We relate these results to the refractivity structure sampled by EM waves at 0.263 and 2 GHz. We also show that at long range an EM field calculated through an LES‐based refractivity field is generally less coherent and significantly weaker than one computed from a “plywood” (i.e., stratified, range‐independent) model of the small‐scale refractivity field. We give a physical explanation for the differences in the EM fields computed in these two ways. Finally, although the plywood model gives results that fit the EM levels observed in the recent Variability of Coastal Atmospheric Refractivity (VOCAR) experiment, it is not physically realistic. The instantaneous top of the atmospheric boundary layer is known to be sharp and horizontally varying, and we show that using such a top also yields a fit to the VOCAR data.</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1029/1999RS900078</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Radio science, 1999-11, Vol.34 (6), p.1413-1435</ispartof><rights>Copyright 1999 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3772-f89dd6290bf35b1e027c0dc36388910e3257079b37c636865fb7acc424fb4ec43</citedby><cites>FETCH-LOGICAL-c3772-f89dd6290bf35b1e027c0dc36388910e3257079b37c636865fb7acc424fb4ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1999RS900078$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1999RS900078$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Gilbert, Kenneth E.</creatorcontrib><creatorcontrib>Di, Xiao</creatorcontrib><creatorcontrib>Khanna, Samir</creatorcontrib><creatorcontrib>Otte, Martin J.</creatorcontrib><creatorcontrib>Wyngaard, John C.</creatorcontrib><title>Electromagnetic wave propagation through simulated atmospheric refractivity fields</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>Large‐eddy simulation (LES) provides three‐dimensional, time‐dependent fields of turbulent refractivity in the atmospheric boundary layer on spatial scales down to a few tens of meters. These fields are directly applicable to the computation of electromagnetic (EM) wave propagation in the megahertz range but not in the gigahertz range. We present an approximate technique for extending LES refractivity fields to the smaller scales needed for calculating EM propagation at gigahertz frequencies. We demonstrate the technique by computing refractivity fields through 1283 LES, extending them to smaller scales in two dimensions, and using them in a parabolic equation EM propagation model. At 0.263 GHz the very small scale structure in the extended fields has a negligible effect on the predicted EM levels. At 2 GHz, however, it increases the predicted levels by 15–25 dB. We relate these results to the refractivity structure sampled by EM waves at 0.263 and 2 GHz. We also show that at long range an EM field calculated through an LES‐based refractivity field is generally less coherent and significantly weaker than one computed from a “plywood” (i.e., stratified, range‐independent) model of the small‐scale refractivity field. We give a physical explanation for the differences in the EM fields computed in these two ways. Finally, although the plywood model gives results that fit the EM levels observed in the recent Variability of Coastal Atmospheric Refractivity (VOCAR) experiment, it is not physically realistic. The instantaneous top of the atmospheric boundary layer is known to be sharp and horizontally varying, and we show that using such a top also yields a fit to the VOCAR data.</description><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp90EFPwjAUB_DGaCKiNz_ATsaD09e1a9ejQUQTggloMF6aruugujFsC8i3dwZjPHF6l9__5b0_QucYrjEk4gYLIcYTAQA8O0AdLCiNuRCvh6gDQLOYMaDH6MT7dwBMU0Y7aNyvjA6uqdVsYYLV0UatTbR0zVLNVLDNIgpz16xm88jbelWpYIpIhbrxy7lxLXemdEoHu7ZhG5XWVIU_RUelqrw5-51d9HLff-49xMOnwWPvdhhrwnkSl5koCpYIyEuS5thAwjUUmjCSZQKDIUnKgYuccM0Iy1ha5lxpTRNa5tRoSrroYre3vfZzZXyQtfXaVJVamGblZcIEZ0xkLbzcC3FKecYw5WlLr3ZUu8b79jm5dLZWbisxyJ-O5f-OW453fGMrs91r5fhuQlNI2ky8y1gfzNdfRrkPyTjhqZyOBnIK45EYsqF8I9_r9o2J</recordid><startdate>199911</startdate><enddate>199911</enddate><creator>Gilbert, Kenneth E.</creator><creator>Di, Xiao</creator><creator>Khanna, Samir</creator><creator>Otte, Martin J.</creator><creator>Wyngaard, John C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>199911</creationdate><title>Electromagnetic wave propagation through simulated atmospheric refractivity fields</title><author>Gilbert, Kenneth E. ; Di, Xiao ; Khanna, Samir ; Otte, Martin J. ; Wyngaard, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3772-f89dd6290bf35b1e027c0dc36388910e3257079b37c636865fb7acc424fb4ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, Kenneth E.</creatorcontrib><creatorcontrib>Di, Xiao</creatorcontrib><creatorcontrib>Khanna, Samir</creatorcontrib><creatorcontrib>Otte, Martin J.</creatorcontrib><creatorcontrib>Wyngaard, John C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, Kenneth E.</au><au>Di, Xiao</au><au>Khanna, Samir</au><au>Otte, Martin J.</au><au>Wyngaard, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic wave propagation through simulated atmospheric refractivity fields</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>1999-11</date><risdate>1999</risdate><volume>34</volume><issue>6</issue><spage>1413</spage><epage>1435</epage><pages>1413-1435</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>Large‐eddy simulation (LES) provides three‐dimensional, time‐dependent fields of turbulent refractivity in the atmospheric boundary layer on spatial scales down to a few tens of meters. These fields are directly applicable to the computation of electromagnetic (EM) wave propagation in the megahertz range but not in the gigahertz range. We present an approximate technique for extending LES refractivity fields to the smaller scales needed for calculating EM propagation at gigahertz frequencies. We demonstrate the technique by computing refractivity fields through 1283 LES, extending them to smaller scales in two dimensions, and using them in a parabolic equation EM propagation model. At 0.263 GHz the very small scale structure in the extended fields has a negligible effect on the predicted EM levels. At 2 GHz, however, it increases the predicted levels by 15–25 dB. We relate these results to the refractivity structure sampled by EM waves at 0.263 and 2 GHz. We also show that at long range an EM field calculated through an LES‐based refractivity field is generally less coherent and significantly weaker than one computed from a “plywood” (i.e., stratified, range‐independent) model of the small‐scale refractivity field. We give a physical explanation for the differences in the EM fields computed in these two ways. Finally, although the plywood model gives results that fit the EM levels observed in the recent Variability of Coastal Atmospheric Refractivity (VOCAR) experiment, it is not physically realistic. The instantaneous top of the atmospheric boundary layer is known to be sharp and horizontally varying, and we show that using such a top also yields a fit to the VOCAR data.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1999RS900078</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 1999-11, Vol.34 (6), p.1413-1435
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_miscellaneous_26976698
source Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
title Electromagnetic wave propagation through simulated atmospheric refractivity fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20wave%20propagation%20through%20simulated%20atmospheric%20refractivity%20fields&rft.jtitle=Radio%20science&rft.au=Gilbert,%20Kenneth%20E.&rft.date=1999-11&rft.volume=34&rft.issue=6&rft.spage=1413&rft.epage=1435&rft.pages=1413-1435&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1029/1999RS900078&rft_dat=%3Cproquest_cross%3E1547861475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547861475&rft_id=info:pmid/&rfr_iscdi=true