Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface
Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials s...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-08, Vol.16 (8), p.11979-11987 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11987 |
---|---|
container_issue | 8 |
container_start_page | 11979 |
container_title | ACS nano |
container_volume | 16 |
creator | Klein, Benedikt P. Ihle, Alexander Kachel, Stefan R. Ruppenthal, Lukas Hall, Samuel J. Sattler, Lars Weber, Sebastian M. Herritsch, Jan Jaegermann, Andrea Ebeling, Daniel Maurer, Reinhard J. Hilt, Gerhard Tonner-Zech, Ralf Schirmeisen, André Gottfried, J. Michael |
description | Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone–Wales (S–W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S–W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control. |
doi_str_mv | 10.1021/acsnano.2c01952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2697369381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697369381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-6efc74dafcdcfcb258153ccb3d75dc9e98f6d076b2be074d7a788ba030002ae23</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EoqUwsyGPSCitHTd2MkIppVIRA0WwRY5zaVOldrCTgY134A15EgwN3VjuTnff_0v3I3ROyZCSkI6kclpqMwwVoUkUHqA-TRgPSMxfD_dzRHvoxLkNIZGIBT9GPRYllPvSR-XS1KYyq1LJCj81RsPXx-eLrMDhWyhANQ5P9VpqBfjG6LzUKyx1jqeVP1mjS4Unpq2r332DmzXgmZX1GjSMHqDxnnPdgC2kglN0VMjKwVnXB-j5brqc3AeLx9l8cr0IJBPjJuBQKDHOZaFyVagsjGIaMaUylosoVwkkccFzIngWZkA8KKSI40wSRggJJYRsgC53vrU1by24Jt2WTkFVSQ2mdWnIE8F4wmLq0dEOVdY4Z6FIa1tupX1PKUl_8k27fNMuX6-46MzbbAv5nv8L1ANXO8Ar041prfa__mv3DUisiQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697369381</pqid></control><display><type>article</type><title>Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface</title><source>American Chemical Society Journals</source><creator>Klein, Benedikt P. ; Ihle, Alexander ; Kachel, Stefan R. ; Ruppenthal, Lukas ; Hall, Samuel J. ; Sattler, Lars ; Weber, Sebastian M. ; Herritsch, Jan ; Jaegermann, Andrea ; Ebeling, Daniel ; Maurer, Reinhard J. ; Hilt, Gerhard ; Tonner-Zech, Ralf ; Schirmeisen, André ; Gottfried, J. Michael</creator><creatorcontrib>Klein, Benedikt P. ; Ihle, Alexander ; Kachel, Stefan R. ; Ruppenthal, Lukas ; Hall, Samuel J. ; Sattler, Lars ; Weber, Sebastian M. ; Herritsch, Jan ; Jaegermann, Andrea ; Ebeling, Daniel ; Maurer, Reinhard J. ; Hilt, Gerhard ; Tonner-Zech, Ralf ; Schirmeisen, André ; Gottfried, J. Michael</creatorcontrib><description>Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone–Wales (S–W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S–W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c01952</identifier><identifier>PMID: 35916359</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-08, Vol.16 (8), p.11979-11987</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-6efc74dafcdcfcb258153ccb3d75dc9e98f6d076b2be074d7a788ba030002ae23</citedby><cites>FETCH-LOGICAL-a374t-6efc74dafcdcfcb258153ccb3d75dc9e98f6d076b2be074d7a788ba030002ae23</cites><orcidid>0000-0002-6759-8559 ; 0000-0002-3004-785X ; 0000-0002-5279-3378 ; 0000-0001-5579-2568 ; 0000-0002-6205-8879 ; 0000-0003-1879-135X ; 0000-0001-5829-170X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c01952$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c01952$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35916359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Benedikt P.</creatorcontrib><creatorcontrib>Ihle, Alexander</creatorcontrib><creatorcontrib>Kachel, Stefan R.</creatorcontrib><creatorcontrib>Ruppenthal, Lukas</creatorcontrib><creatorcontrib>Hall, Samuel J.</creatorcontrib><creatorcontrib>Sattler, Lars</creatorcontrib><creatorcontrib>Weber, Sebastian M.</creatorcontrib><creatorcontrib>Herritsch, Jan</creatorcontrib><creatorcontrib>Jaegermann, Andrea</creatorcontrib><creatorcontrib>Ebeling, Daniel</creatorcontrib><creatorcontrib>Maurer, Reinhard J.</creatorcontrib><creatorcontrib>Hilt, Gerhard</creatorcontrib><creatorcontrib>Tonner-Zech, Ralf</creatorcontrib><creatorcontrib>Schirmeisen, André</creatorcontrib><creatorcontrib>Gottfried, J. Michael</creatorcontrib><title>Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone–Wales (S–W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S–W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EoqUwsyGPSCitHTd2MkIppVIRA0WwRY5zaVOldrCTgY134A15EgwN3VjuTnff_0v3I3ROyZCSkI6kclpqMwwVoUkUHqA-TRgPSMxfD_dzRHvoxLkNIZGIBT9GPRYllPvSR-XS1KYyq1LJCj81RsPXx-eLrMDhWyhANQ5P9VpqBfjG6LzUKyx1jqeVP1mjS4Unpq2r332DmzXgmZX1GjSMHqDxnnPdgC2kglN0VMjKwVnXB-j5brqc3AeLx9l8cr0IJBPjJuBQKDHOZaFyVagsjGIaMaUylosoVwkkccFzIngWZkA8KKSI40wSRggJJYRsgC53vrU1by24Jt2WTkFVSQ2mdWnIE8F4wmLq0dEOVdY4Z6FIa1tupX1PKUl_8k27fNMuX6-46MzbbAv5nv8L1ANXO8Ar041prfa__mv3DUisiQM</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Klein, Benedikt P.</creator><creator>Ihle, Alexander</creator><creator>Kachel, Stefan R.</creator><creator>Ruppenthal, Lukas</creator><creator>Hall, Samuel J.</creator><creator>Sattler, Lars</creator><creator>Weber, Sebastian M.</creator><creator>Herritsch, Jan</creator><creator>Jaegermann, Andrea</creator><creator>Ebeling, Daniel</creator><creator>Maurer, Reinhard J.</creator><creator>Hilt, Gerhard</creator><creator>Tonner-Zech, Ralf</creator><creator>Schirmeisen, André</creator><creator>Gottfried, J. Michael</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6759-8559</orcidid><orcidid>https://orcid.org/0000-0002-3004-785X</orcidid><orcidid>https://orcid.org/0000-0002-5279-3378</orcidid><orcidid>https://orcid.org/0000-0001-5579-2568</orcidid><orcidid>https://orcid.org/0000-0002-6205-8879</orcidid><orcidid>https://orcid.org/0000-0003-1879-135X</orcidid><orcidid>https://orcid.org/0000-0001-5829-170X</orcidid></search><sort><creationdate>20220823</creationdate><title>Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface</title><author>Klein, Benedikt P. ; Ihle, Alexander ; Kachel, Stefan R. ; Ruppenthal, Lukas ; Hall, Samuel J. ; Sattler, Lars ; Weber, Sebastian M. ; Herritsch, Jan ; Jaegermann, Andrea ; Ebeling, Daniel ; Maurer, Reinhard J. ; Hilt, Gerhard ; Tonner-Zech, Ralf ; Schirmeisen, André ; Gottfried, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-6efc74dafcdcfcb258153ccb3d75dc9e98f6d076b2be074d7a788ba030002ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Benedikt P.</creatorcontrib><creatorcontrib>Ihle, Alexander</creatorcontrib><creatorcontrib>Kachel, Stefan R.</creatorcontrib><creatorcontrib>Ruppenthal, Lukas</creatorcontrib><creatorcontrib>Hall, Samuel J.</creatorcontrib><creatorcontrib>Sattler, Lars</creatorcontrib><creatorcontrib>Weber, Sebastian M.</creatorcontrib><creatorcontrib>Herritsch, Jan</creatorcontrib><creatorcontrib>Jaegermann, Andrea</creatorcontrib><creatorcontrib>Ebeling, Daniel</creatorcontrib><creatorcontrib>Maurer, Reinhard J.</creatorcontrib><creatorcontrib>Hilt, Gerhard</creatorcontrib><creatorcontrib>Tonner-Zech, Ralf</creatorcontrib><creatorcontrib>Schirmeisen, André</creatorcontrib><creatorcontrib>Gottfried, J. Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Benedikt P.</au><au>Ihle, Alexander</au><au>Kachel, Stefan R.</au><au>Ruppenthal, Lukas</au><au>Hall, Samuel J.</au><au>Sattler, Lars</au><au>Weber, Sebastian M.</au><au>Herritsch, Jan</au><au>Jaegermann, Andrea</au><au>Ebeling, Daniel</au><au>Maurer, Reinhard J.</au><au>Hilt, Gerhard</au><au>Tonner-Zech, Ralf</au><au>Schirmeisen, André</au><au>Gottfried, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><spage>11979</spage><epage>11987</epage><pages>11979-11987</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone–Wales (S–W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S–W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35916359</pmid><doi>10.1021/acsnano.2c01952</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6759-8559</orcidid><orcidid>https://orcid.org/0000-0002-3004-785X</orcidid><orcidid>https://orcid.org/0000-0002-5279-3378</orcidid><orcidid>https://orcid.org/0000-0001-5579-2568</orcidid><orcidid>https://orcid.org/0000-0002-6205-8879</orcidid><orcidid>https://orcid.org/0000-0003-1879-135X</orcidid><orcidid>https://orcid.org/0000-0001-5829-170X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-08, Vol.16 (8), p.11979-11987 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2697369381 |
source | American Chemical Society Journals |
title | Topological Stone–Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Stone%E2%80%93Wales%20Defects%20Enhance%20Bonding%20and%20Electronic%20Coupling%20at%20the%20Graphene/Metal%20Interface&rft.jtitle=ACS%20nano&rft.au=Klein,%20Benedikt%20P.&rft.date=2022-08-23&rft.volume=16&rft.issue=8&rft.spage=11979&rft.epage=11987&rft.pages=11979-11987&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c01952&rft_dat=%3Cproquest_cross%3E2697369381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697369381&rft_id=info:pmid/35916359&rfr_iscdi=true |