Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries

Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-10, Vol.18 (43), p.e2105169-n/a
Hauptverfasser: Dong, Wen‐Da, Li, Chao‐Fan, Wang, Chun‐Yu, Wu, Liang, Hu, Zhi‐Yi, Liu, Jing, Chen, Li‐Hua, Li, Yu, Su, Bao‐Lian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page e2105169
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Dong, Wen‐Da
Li, Chao‐Fan
Wang, Chun‐Yu
Wu, Liang
Hu, Zhi‐Yi
Liu, Jing
Chen, Li‐Hua
Li, Yu
Su, Bao‐Lian
description Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performance ZnSe/carbon fibers (ZnSe‐CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium‐ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe‐CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe‐CFs delivering a superior rate performance of 206 mAh g−1 at 1500 mA g−1 for half battery and an initial discharge capacity of 197.4 mAh g−1 at a current density of 1 A g−1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes. A ZnSe/carbon fibers (ZnSe‐CFs) anode with high electrons/Na+ transport efficiency by engineering ZnSe/C heterostructure is designed for high performance sodium‐ion half/full batteries. Phase conversion is found to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase, providing the guidance for a better understanding of phase conversion anodes for high‐performance sodium‐ion batteries.
doi_str_mv 10.1002/smll.202105169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2697092445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728372410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-cd8c051e4c59bcc355512bd6a2ccf35ccb9e96c79c19c28e6b42d41ad3692d063</originalsourceid><addsrcrecordid>eNqFkb9O6zAUhyMEEn9XZkssLC22kzj1CFVLkXp1kQoLi-WenICR4xQ7AXXrzMQDcF-uT3KNikBiYfLR0ffZ5_iXJMeM9hml_CzU1vY55YzmTMitZI8JlvbEgMvtr5rR3WQ_hEdKU8azYi95vX7QAcmwcc_og2kcOQdAi163xt2T9er9zq1Xb6MAeoHr1T8yqiqElhhH7twsdt6G40Am2KJvQus7aDuPpGo8mZj7B3KNPta1doBk1pSmq6NxFV-ZaFudjTtryYVuo2wwHCY7lbYBjz7Pg-R2PLoZTnrTv5dXw_NpD9Kcyh6UA4gbYga5nEPs5Tnj81JoDlClOcBcohRQSGAS-ADFPONlxnSZCslLKtKD5HRz78I3Tx2GVtUmxJ2tdth0QXEhCyp5luURPfmBPjadd3E6xQs-SAueMRqp_oaC-AfBY6UW3tTaLxWj6iMa9RGN-oomCnIjvBiLy19oNfsznX67_wFC15jU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728372410</pqid></control><display><type>article</type><title>Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries</title><source>Access via Wiley Online Library</source><creator>Dong, Wen‐Da ; Li, Chao‐Fan ; Wang, Chun‐Yu ; Wu, Liang ; Hu, Zhi‐Yi ; Liu, Jing ; Chen, Li‐Hua ; Li, Yu ; Su, Bao‐Lian</creator><creatorcontrib>Dong, Wen‐Da ; Li, Chao‐Fan ; Wang, Chun‐Yu ; Wu, Liang ; Hu, Zhi‐Yi ; Liu, Jing ; Chen, Li‐Hua ; Li, Yu ; Su, Bao‐Lian</creatorcontrib><description>Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performance ZnSe/carbon fibers (ZnSe‐CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium‐ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe‐CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe‐CFs delivering a superior rate performance of 206 mAh g−1 at 1500 mA g−1 for half battery and an initial discharge capacity of 197.4 mAh g−1 at a current density of 1 A g−1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes. A ZnSe/carbon fibers (ZnSe‐CFs) anode with high electrons/Na+ transport efficiency by engineering ZnSe/C heterostructure is designed for high performance sodium‐ion half/full batteries. Phase conversion is found to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase, providing the guidance for a better understanding of phase conversion anodes for high‐performance sodium‐ion batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105169</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon fibers ; Conversion ; Electrochemical analysis ; Energy storage ; Heterostructures ; Nanotechnology ; phase conversion ; Sodium ; Sodium-ion batteries ; sodium‐ion half/full batteries ; Solid electrolytes ; Storage batteries ; ZnSe‐carbon fibers heterojunctions ; Zn‐escape</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (43), p.e2105169-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-cd8c051e4c59bcc355512bd6a2ccf35ccb9e96c79c19c28e6b42d41ad3692d063</citedby><cites>FETCH-LOGICAL-c3509-cd8c051e4c59bcc355512bd6a2ccf35ccb9e96c79c19c28e6b42d41ad3692d063</cites><orcidid>0000-0002-1282-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105169$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105169$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Dong, Wen‐Da</creatorcontrib><creatorcontrib>Li, Chao‐Fan</creatorcontrib><creatorcontrib>Wang, Chun‐Yu</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Hu, Zhi‐Yi</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Chen, Li‐Hua</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Su, Bao‐Lian</creatorcontrib><title>Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performance ZnSe/carbon fibers (ZnSe‐CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium‐ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe‐CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe‐CFs delivering a superior rate performance of 206 mAh g−1 at 1500 mA g−1 for half battery and an initial discharge capacity of 197.4 mAh g−1 at a current density of 1 A g−1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes. A ZnSe/carbon fibers (ZnSe‐CFs) anode with high electrons/Na+ transport efficiency by engineering ZnSe/C heterostructure is designed for high performance sodium‐ion half/full batteries. Phase conversion is found to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase, providing the guidance for a better understanding of phase conversion anodes for high‐performance sodium‐ion batteries.</description><subject>Anodes</subject><subject>Carbon fibers</subject><subject>Conversion</subject><subject>Electrochemical analysis</subject><subject>Energy storage</subject><subject>Heterostructures</subject><subject>Nanotechnology</subject><subject>phase conversion</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>sodium‐ion half/full batteries</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><subject>ZnSe‐carbon fibers heterojunctions</subject><subject>Zn‐escape</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkb9O6zAUhyMEEn9XZkssLC22kzj1CFVLkXp1kQoLi-WenICR4xQ7AXXrzMQDcF-uT3KNikBiYfLR0ffZ5_iXJMeM9hml_CzU1vY55YzmTMitZI8JlvbEgMvtr5rR3WQ_hEdKU8azYi95vX7QAcmwcc_og2kcOQdAi163xt2T9er9zq1Xb6MAeoHr1T8yqiqElhhH7twsdt6G40Am2KJvQus7aDuPpGo8mZj7B3KNPta1doBk1pSmq6NxFV-ZaFudjTtryYVuo2wwHCY7lbYBjz7Pg-R2PLoZTnrTv5dXw_NpD9Kcyh6UA4gbYga5nEPs5Tnj81JoDlClOcBcohRQSGAS-ADFPONlxnSZCslLKtKD5HRz78I3Tx2GVtUmxJ2tdth0QXEhCyp5luURPfmBPjadd3E6xQs-SAueMRqp_oaC-AfBY6UW3tTaLxWj6iMa9RGN-oomCnIjvBiLy19oNfsznX67_wFC15jU</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Dong, Wen‐Da</creator><creator>Li, Chao‐Fan</creator><creator>Wang, Chun‐Yu</creator><creator>Wu, Liang</creator><creator>Hu, Zhi‐Yi</creator><creator>Liu, Jing</creator><creator>Chen, Li‐Hua</creator><creator>Li, Yu</creator><creator>Su, Bao‐Lian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1282-5312</orcidid></search><sort><creationdate>20221001</creationdate><title>Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries</title><author>Dong, Wen‐Da ; Li, Chao‐Fan ; Wang, Chun‐Yu ; Wu, Liang ; Hu, Zhi‐Yi ; Liu, Jing ; Chen, Li‐Hua ; Li, Yu ; Su, Bao‐Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-cd8c051e4c59bcc355512bd6a2ccf35ccb9e96c79c19c28e6b42d41ad3692d063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Carbon fibers</topic><topic>Conversion</topic><topic>Electrochemical analysis</topic><topic>Energy storage</topic><topic>Heterostructures</topic><topic>Nanotechnology</topic><topic>phase conversion</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>sodium‐ion half/full batteries</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><topic>ZnSe‐carbon fibers heterojunctions</topic><topic>Zn‐escape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wen‐Da</creatorcontrib><creatorcontrib>Li, Chao‐Fan</creatorcontrib><creatorcontrib>Wang, Chun‐Yu</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Hu, Zhi‐Yi</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Chen, Li‐Hua</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Su, Bao‐Lian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Wen‐Da</au><au>Li, Chao‐Fan</au><au>Wang, Chun‐Yu</au><au>Wu, Liang</au><au>Hu, Zhi‐Yi</au><au>Liu, Jing</au><au>Chen, Li‐Hua</au><au>Li, Yu</au><au>Su, Bao‐Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>43</issue><spage>e2105169</spage><epage>n/a</epage><pages>e2105169-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performance ZnSe/carbon fibers (ZnSe‐CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium‐ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe‐CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe‐CFs delivering a superior rate performance of 206 mAh g−1 at 1500 mA g−1 for half battery and an initial discharge capacity of 197.4 mAh g−1 at a current density of 1 A g−1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes. A ZnSe/carbon fibers (ZnSe‐CFs) anode with high electrons/Na+ transport efficiency by engineering ZnSe/C heterostructure is designed for high performance sodium‐ion half/full batteries. Phase conversion is found to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase, providing the guidance for a better understanding of phase conversion anodes for high‐performance sodium‐ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202105169</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1282-5312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (43), p.e2105169-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2697092445
source Access via Wiley Online Library
subjects Anodes
Carbon fibers
Conversion
Electrochemical analysis
Energy storage
Heterostructures
Nanotechnology
phase conversion
Sodium
Sodium-ion batteries
sodium‐ion half/full batteries
Solid electrolytes
Storage batteries
ZnSe‐carbon fibers heterojunctions
Zn‐escape
title Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Conversion%20Accelerating%20%E2%80%9CZn%E2%80%90Escape%E2%80%9D%20Effect%20in%20ZnSe%E2%80%90CFs%20Heterostructure%20for%20High%20Performance%20Sodium%E2%80%90Ion%20Half/Full%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dong,%20Wen%E2%80%90Da&rft.date=2022-10-01&rft.volume=18&rft.issue=43&rft.spage=e2105169&rft.epage=n/a&rft.pages=e2105169-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105169&rft_dat=%3Cproquest_cross%3E2728372410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728372410&rft_id=info:pmid/&rfr_iscdi=true