Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure

Glass‐polymer laminates designed as safety glazing for automotive and architectural applications demonstrate a rich variety of deformation and failure modes due to the complex stress fields developed on loading and the statistical nature of glass fracture. This complexity in stress development resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1999-07, Vol.82 (7), p.1761-1770
Hauptverfasser: Bennison, Stephen J., Jagota, Anand, Smith, C. Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1770
container_issue 7
container_start_page 1761
container_title Journal of the American Ceramic Society
container_volume 82
creator Bennison, Stephen J.
Jagota, Anand
Smith, C. Anthony
description Glass‐polymer laminates designed as safety glazing for automotive and architectural applications demonstrate a rich variety of deformation and failure modes due to the complex stress fields developed on loading and the statistical nature of glass fracture. This complexity in stress development results from the large modulus mismatch between float glass and typical polymers used in safety glazing (Eglass/Epolymer similar/congruent 103‐105). We investigate stress development and the sequence of glass‐ply fracture in model two‐ply glass‐poly(vinyl butyral) (PVB; Butacite®) laminates during loading in biaxial flexure using a circular (upper) punch on three‐point (lower) support. The experiment is analyzed using a three‐dimensional finite‐element model with a viscoelastic constitutive model of plasticized PVB deformation. Our stress analysis shows that the maximum biaxial stress shifts location from one glass ply to the other as a function of loading rate and/or temperature and the loading‐support dimensions. We identify two primary modes for the initiation of failure associated with changes in maximum stress location: (1) first crack initiated in upper, ring‐loaded, glass ply (at the internal glass‐polymer interface) and (2) first crack initiated in lower, supported, glass ply (outer glass surface). The sequence of glass ply fracture is seen to depend strongly on loading rate and temperature: high temperatures, relative to the polymer‐glass transition temperature, and/or slow loading rates bias first cracking to the upper ply; low temperatures and/or high loading rates promote lower ply first cracking. We present a method to compute the probability of first cracking by combining our finite‐element‐based stress analysis with a Weibull statistical description of glass fracture. The test protocol and stress analysis presented can form the basis of a laboratory‐scale test for laminates and can be readily extended to describe load‐bearing capacity of laminate plates used in large‐scale commercial applications.
doi_str_mv 10.1111/j.1151-2916.1999.tb01997.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26970338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26970338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-57a4ec670eb60f4f511cde6cbf2effb743196b63e7b41e437a8ba12e9a1078c93</originalsourceid><addsrcrecordid>eNqVkN-K1DAUh4soOK6-Q1lEdi86m9Pmr1fujDujy-CKKF6G05hCxky7Jq22L-VD-GSmzKDgnbn5EfLlO4dflp0DWUI6V_sUDIpSAV-CUmrZ1ySlWI4PsgWw09PDbEEIKQshS_I4exLjPl1BSbrI7jYBTT8Em3dNvvUY49X7zk8X3107-bwe-imgv8wvVkOPxvX218_LfIcH12JvY-7afOVwdOjzjbdj0jzNHjXoo312yrPs0-bm4_pNsbvbvl1f7wrDiIKCCaTWcEFszUlDGwZgvlhu6qa0TVMLWoHiNa-sqClYWgmUNUJpFQIR0qjqLHtx9N6H7ttgY68PLhrrPba2G6IuuRKkqmQCz_8B990Q2rSbLkFIRamABL08QiZ0MQbb6PvgDhgmDUTPReu9novWc5t6LlqfitZj-vz8NAGjQd8EbI2Lfw1SAmU8Ya-O2A_n7fQfA_Tt9foGBJ_XLI4KF3s7_lFg-Kq5qATTn99tdfVasg_bFdO31W865aGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217894471</pqid></control><display><type>article</type><title>Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure</title><source>Wiley Online Library Journals</source><creator>Bennison, Stephen J. ; Jagota, Anand ; Smith, C. Anthony</creator><creatorcontrib>Bennison, Stephen J. ; Jagota, Anand ; Smith, C. Anthony</creatorcontrib><description>Glass‐polymer laminates designed as safety glazing for automotive and architectural applications demonstrate a rich variety of deformation and failure modes due to the complex stress fields developed on loading and the statistical nature of glass fracture. This complexity in stress development results from the large modulus mismatch between float glass and typical polymers used in safety glazing (Eglass/Epolymer similar/congruent 103‐105). We investigate stress development and the sequence of glass‐ply fracture in model two‐ply glass‐poly(vinyl butyral) (PVB; Butacite®) laminates during loading in biaxial flexure using a circular (upper) punch on three‐point (lower) support. The experiment is analyzed using a three‐dimensional finite‐element model with a viscoelastic constitutive model of plasticized PVB deformation. Our stress analysis shows that the maximum biaxial stress shifts location from one glass ply to the other as a function of loading rate and/or temperature and the loading‐support dimensions. We identify two primary modes for the initiation of failure associated with changes in maximum stress location: (1) first crack initiated in upper, ring‐loaded, glass ply (at the internal glass‐polymer interface) and (2) first crack initiated in lower, supported, glass ply (outer glass surface). The sequence of glass ply fracture is seen to depend strongly on loading rate and temperature: high temperatures, relative to the polymer‐glass transition temperature, and/or slow loading rates bias first cracking to the upper ply; low temperatures and/or high loading rates promote lower ply first cracking. We present a method to compute the probability of first cracking by combining our finite‐element‐based stress analysis with a Weibull statistical description of glass fracture. The test protocol and stress analysis presented can form the basis of a laboratory‐scale test for laminates and can be readily extended to describe load‐bearing capacity of laminate plates used in large‐scale commercial applications.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1999.tb01997.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Westerville, Ohio: American Ceramics Society</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Chemical industry and chemicals ; Exact sciences and technology ; Glasses ; Structure, analysis, properties</subject><ispartof>Journal of the American Ceramic Society, 1999-07, Vol.82 (7), p.1761-1770</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Ceramic Society Jul 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-57a4ec670eb60f4f511cde6cbf2effb743196b63e7b41e437a8ba12e9a1078c93</citedby><cites>FETCH-LOGICAL-c5091-57a4ec670eb60f4f511cde6cbf2effb743196b63e7b41e437a8ba12e9a1078c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1999.tb01997.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1999.tb01997.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1881456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennison, Stephen J.</creatorcontrib><creatorcontrib>Jagota, Anand</creatorcontrib><creatorcontrib>Smith, C. Anthony</creatorcontrib><title>Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure</title><title>Journal of the American Ceramic Society</title><description>Glass‐polymer laminates designed as safety glazing for automotive and architectural applications demonstrate a rich variety of deformation and failure modes due to the complex stress fields developed on loading and the statistical nature of glass fracture. This complexity in stress development results from the large modulus mismatch between float glass and typical polymers used in safety glazing (Eglass/Epolymer similar/congruent 103‐105). We investigate stress development and the sequence of glass‐ply fracture in model two‐ply glass‐poly(vinyl butyral) (PVB; Butacite®) laminates during loading in biaxial flexure using a circular (upper) punch on three‐point (lower) support. The experiment is analyzed using a three‐dimensional finite‐element model with a viscoelastic constitutive model of plasticized PVB deformation. Our stress analysis shows that the maximum biaxial stress shifts location from one glass ply to the other as a function of loading rate and/or temperature and the loading‐support dimensions. We identify two primary modes for the initiation of failure associated with changes in maximum stress location: (1) first crack initiated in upper, ring‐loaded, glass ply (at the internal glass‐polymer interface) and (2) first crack initiated in lower, supported, glass ply (outer glass surface). The sequence of glass ply fracture is seen to depend strongly on loading rate and temperature: high temperatures, relative to the polymer‐glass transition temperature, and/or slow loading rates bias first cracking to the upper ply; low temperatures and/or high loading rates promote lower ply first cracking. We present a method to compute the probability of first cracking by combining our finite‐element‐based stress analysis with a Weibull statistical description of glass fracture. The test protocol and stress analysis presented can form the basis of a laboratory‐scale test for laminates and can be readily extended to describe load‐bearing capacity of laminate plates used in large‐scale commercial applications.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Glasses</subject><subject>Structure, analysis, properties</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqVkN-K1DAUh4soOK6-Q1lEdi86m9Pmr1fujDujy-CKKF6G05hCxky7Jq22L-VD-GSmzKDgnbn5EfLlO4dflp0DWUI6V_sUDIpSAV-CUmrZ1ySlWI4PsgWw09PDbEEIKQshS_I4exLjPl1BSbrI7jYBTT8Em3dNvvUY49X7zk8X3107-bwe-imgv8wvVkOPxvX218_LfIcH12JvY-7afOVwdOjzjbdj0jzNHjXoo312yrPs0-bm4_pNsbvbvl1f7wrDiIKCCaTWcEFszUlDGwZgvlhu6qa0TVMLWoHiNa-sqClYWgmUNUJpFQIR0qjqLHtx9N6H7ttgY68PLhrrPba2G6IuuRKkqmQCz_8B990Q2rSbLkFIRamABL08QiZ0MQbb6PvgDhgmDUTPReu9novWc5t6LlqfitZj-vz8NAGjQd8EbI2Lfw1SAmU8Ya-O2A_n7fQfA_Tt9foGBJ_XLI4KF3s7_lFg-Kq5qATTn99tdfVasg_bFdO31W865aGI</recordid><startdate>199907</startdate><enddate>199907</enddate><creator>Bennison, Stephen J.</creator><creator>Jagota, Anand</creator><creator>Smith, C. Anthony</creator><general>American Ceramics Society</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>199907</creationdate><title>Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure</title><author>Bennison, Stephen J. ; Jagota, Anand ; Smith, C. Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-57a4ec670eb60f4f511cde6cbf2effb743196b63e7b41e437a8ba12e9a1078c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Glasses</topic><topic>Structure, analysis, properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennison, Stephen J.</creatorcontrib><creatorcontrib>Jagota, Anand</creatorcontrib><creatorcontrib>Smith, C. Anthony</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennison, Stephen J.</au><au>Jagota, Anand</au><au>Smith, C. Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1999-07</date><risdate>1999</risdate><volume>82</volume><issue>7</issue><spage>1761</spage><epage>1770</epage><pages>1761-1770</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Glass‐polymer laminates designed as safety glazing for automotive and architectural applications demonstrate a rich variety of deformation and failure modes due to the complex stress fields developed on loading and the statistical nature of glass fracture. This complexity in stress development results from the large modulus mismatch between float glass and typical polymers used in safety glazing (Eglass/Epolymer similar/congruent 103‐105). We investigate stress development and the sequence of glass‐ply fracture in model two‐ply glass‐poly(vinyl butyral) (PVB; Butacite®) laminates during loading in biaxial flexure using a circular (upper) punch on three‐point (lower) support. The experiment is analyzed using a three‐dimensional finite‐element model with a viscoelastic constitutive model of plasticized PVB deformation. Our stress analysis shows that the maximum biaxial stress shifts location from one glass ply to the other as a function of loading rate and/or temperature and the loading‐support dimensions. We identify two primary modes for the initiation of failure associated with changes in maximum stress location: (1) first crack initiated in upper, ring‐loaded, glass ply (at the internal glass‐polymer interface) and (2) first crack initiated in lower, supported, glass ply (outer glass surface). The sequence of glass ply fracture is seen to depend strongly on loading rate and temperature: high temperatures, relative to the polymer‐glass transition temperature, and/or slow loading rates bias first cracking to the upper ply; low temperatures and/or high loading rates promote lower ply first cracking. We present a method to compute the probability of first cracking by combining our finite‐element‐based stress analysis with a Weibull statistical description of glass fracture. The test protocol and stress analysis presented can form the basis of a laboratory‐scale test for laminates and can be readily extended to describe load‐bearing capacity of laminate plates used in large‐scale commercial applications.</abstract><cop>Westerville, Ohio</cop><pub>American Ceramics Society</pub><doi>10.1111/j.1151-2916.1999.tb01997.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1999-07, Vol.82 (7), p.1761-1770
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_26970338
source Wiley Online Library Journals
subjects Applied sciences
Building materials. Ceramics. Glasses
Chemical industry and chemicals
Exact sciences and technology
Glasses
Structure, analysis, properties
title Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20of%20Glass/Poly(vinyl%20butyral)%20(Butacite%C2%AE)%20Laminates%20in%20Biaxial%20Flexure&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Bennison,%20Stephen%20J.&rft.date=1999-07&rft.volume=82&rft.issue=7&rft.spage=1761&rft.epage=1770&rft.pages=1761-1770&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1999.tb01997.x&rft_dat=%3Cproquest_cross%3E26970338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217894471&rft_id=info:pmid/&rfr_iscdi=true