Synergistic Integration and Pharmacomechanical Function of Enzyme‐Magnetite Nanoparticle Swarms for Low‐Dose Fast Thrombolysis

Magnetic micro‐/nanoparticles are extensively explored over the past decade as active diagnostic/therapeutic agents for minimally invasive medicine. However, sufficient function integration on these miniaturized bodies toward practical applications remains challenging. This work proposes a synergist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-08, Vol.18 (34), p.e2202848-n/a
Hauptverfasser: Tang, Xiuzhen, Manamanchaiyaporn, Laliphat, Zhou, Qi, Huang, Chenyang, Li, Lihuang, Li, Ziqiao, Wang, Longchen, Wang, Jienan, Ren, Lei, Xu, Tiantian, Yan, Xiaohui, Zheng, Yuanyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page e2202848
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Tang, Xiuzhen
Manamanchaiyaporn, Laliphat
Zhou, Qi
Huang, Chenyang
Li, Lihuang
Li, Ziqiao
Wang, Longchen
Wang, Jienan
Ren, Lei
Xu, Tiantian
Yan, Xiaohui
Zheng, Yuanyi
description Magnetic micro‐/nanoparticles are extensively explored over the past decade as active diagnostic/therapeutic agents for minimally invasive medicine. However, sufficient function integration on these miniaturized bodies toward practical applications remains challenging. This work proposes a synergistic strategy via integrating particle functionalization and bioinspired swarming, demonstrated by recombinant tissue plasminogen activator modified magnetite nanoparticles (rtPA‐Fe3O4 NPs) for fast thrombolysis in vivo with low drug dosage. The synthesized rtPA‐Fe3O4 NPs exhibit superior magnetic performance, high biocompatibility, and thrombolytic enzyme activity. Benefiting from a customized magnetic operation system designed for animal experiments and preclinical development, these agglomeration‐free NPs can assemble into micro‐/milli‐scale swarms capable of robust maneuver and reconfigurable transformation for on‐demand tasks in complex biofluids. Specifically, the spinning mode of the swarm exerts focused fluid shear stresses while rubbing on the thrombus surface, constituting a mechanical force for clot breakdown. The synergy of the NPs’ inherent enzymatic effect and swarming‐triggered fluid forces enables amplified efficacy of thrombolysis in an in vivo occlusion model of rabbit carotid artery, using lower drug concentration than clinical dosage. Furthermore, swarming‐enhanced ultrasound signals aid in imaging‐guided treatment. Therefore, the pharmacomechanical NP swarms herein represent an injectable thrombolytic tool joining advantages of intravenous drug therapy and robotic intervention. An injectable thrombolytic tool for fast thrombolysis in vivo using low drug dosage is reported, highlighting synergistic pharmacomechanical function of integrated enzyme‐magnetite (rtPA‐Fe3O4) nanoparticle swarms in rabbit carotid artery.
doi_str_mv 10.1002/smll.202202848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2696864409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705966294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-b0132eda31a49592fd7b4be1445027f7dd380e4c5e38ce44b41cad0a47cd135d3</originalsourceid><addsrcrecordid>eNqFkU1LHEEQhocQIUZzzbnBSy676a_56KMYV4XRCGvOTU1PzW5LT_eme5ZlPIm_IL8xvySjGwzkIhRUQT1PUfBm2WdG54xS_jX1zs055VNVsnqXHbKCiVlRcfX-dWb0Q_YxpXtKBeOyPMyelqPHuLJpsIZc-QFXEQYbPAHfkts1xB5M6NGswVsDjiy23rzsQ0fO_cPY4-_HX9ew8jjYAckN-LCBOB1zSJa7SU-kC5HUYTdx30JCsoA0kLt1DH0T3JhsOs4OOnAJP_3tR9mPxfnd2eWs_n5xdXZaz4xQtJo1lAmOLQgGUuWKd23ZyAaZlDnlZVe2ragoSpOjqAxK2UhmoKUgS9MykbfiKPuyv7uJ4ecW06B7mww6Bx7DNmleqKIqpKRqQk_-Q-_DNvrpO81Lmqui4EpO1HxPmRhSitjpTbQ9xFEzqp8j0c-R6NdIJkHthZ11OL5B6-V1Xf9z_wDI-5Si</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705966294</pqid></control><display><type>article</type><title>Synergistic Integration and Pharmacomechanical Function of Enzyme‐Magnetite Nanoparticle Swarms for Low‐Dose Fast Thrombolysis</title><source>Wiley Online Library</source><creator>Tang, Xiuzhen ; Manamanchaiyaporn, Laliphat ; Zhou, Qi ; Huang, Chenyang ; Li, Lihuang ; Li, Ziqiao ; Wang, Longchen ; Wang, Jienan ; Ren, Lei ; Xu, Tiantian ; Yan, Xiaohui ; Zheng, Yuanyi</creator><creatorcontrib>Tang, Xiuzhen ; Manamanchaiyaporn, Laliphat ; Zhou, Qi ; Huang, Chenyang ; Li, Lihuang ; Li, Ziqiao ; Wang, Longchen ; Wang, Jienan ; Ren, Lei ; Xu, Tiantian ; Yan, Xiaohui ; Zheng, Yuanyi</creatorcontrib><description>Magnetic micro‐/nanoparticles are extensively explored over the past decade as active diagnostic/therapeutic agents for minimally invasive medicine. However, sufficient function integration on these miniaturized bodies toward practical applications remains challenging. This work proposes a synergistic strategy via integrating particle functionalization and bioinspired swarming, demonstrated by recombinant tissue plasminogen activator modified magnetite nanoparticles (rtPA‐Fe3O4 NPs) for fast thrombolysis in vivo with low drug dosage. The synthesized rtPA‐Fe3O4 NPs exhibit superior magnetic performance, high biocompatibility, and thrombolytic enzyme activity. Benefiting from a customized magnetic operation system designed for animal experiments and preclinical development, these agglomeration‐free NPs can assemble into micro‐/milli‐scale swarms capable of robust maneuver and reconfigurable transformation for on‐demand tasks in complex biofluids. Specifically, the spinning mode of the swarm exerts focused fluid shear stresses while rubbing on the thrombus surface, constituting a mechanical force for clot breakdown. The synergy of the NPs’ inherent enzymatic effect and swarming‐triggered fluid forces enables amplified efficacy of thrombolysis in an in vivo occlusion model of rabbit carotid artery, using lower drug concentration than clinical dosage. Furthermore, swarming‐enhanced ultrasound signals aid in imaging‐guided treatment. Therefore, the pharmacomechanical NP swarms herein represent an injectable thrombolytic tool joining advantages of intravenous drug therapy and robotic intervention. An injectable thrombolytic tool for fast thrombolysis in vivo using low drug dosage is reported, highlighting synergistic pharmacomechanical function of integrated enzyme‐magnetite (rtPA‐Fe3O4) nanoparticle swarms in rabbit carotid artery.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202202848</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Carotid arteries ; Chemical compounds ; Chemotherapy ; Dosage ; Drug dosages ; enzyme ; Enzyme activity ; Enzymes ; Iron oxides ; magnetic manipulation ; Magnetite ; magnetite nanoparticles ; Nanoparticles ; Nanotechnology ; Occlusion ; Pharmacology ; Rubbing ; Shear stress ; swarm control ; Swarming ; Task complexity ; thrombolysis</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-08, Vol.18 (34), p.e2202848-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-b0132eda31a49592fd7b4be1445027f7dd380e4c5e38ce44b41cad0a47cd135d3</citedby><cites>FETCH-LOGICAL-c3908-b0132eda31a49592fd7b4be1445027f7dd380e4c5e38ce44b41cad0a47cd135d3</cites><orcidid>0000-0003-3560-2311 ; 0000-0001-6089-0664 ; 0000-0002-1328-0641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202202848$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202202848$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Tang, Xiuzhen</creatorcontrib><creatorcontrib>Manamanchaiyaporn, Laliphat</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Huang, Chenyang</creatorcontrib><creatorcontrib>Li, Lihuang</creatorcontrib><creatorcontrib>Li, Ziqiao</creatorcontrib><creatorcontrib>Wang, Longchen</creatorcontrib><creatorcontrib>Wang, Jienan</creatorcontrib><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Xu, Tiantian</creatorcontrib><creatorcontrib>Yan, Xiaohui</creatorcontrib><creatorcontrib>Zheng, Yuanyi</creatorcontrib><title>Synergistic Integration and Pharmacomechanical Function of Enzyme‐Magnetite Nanoparticle Swarms for Low‐Dose Fast Thrombolysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Magnetic micro‐/nanoparticles are extensively explored over the past decade as active diagnostic/therapeutic agents for minimally invasive medicine. However, sufficient function integration on these miniaturized bodies toward practical applications remains challenging. This work proposes a synergistic strategy via integrating particle functionalization and bioinspired swarming, demonstrated by recombinant tissue plasminogen activator modified magnetite nanoparticles (rtPA‐Fe3O4 NPs) for fast thrombolysis in vivo with low drug dosage. The synthesized rtPA‐Fe3O4 NPs exhibit superior magnetic performance, high biocompatibility, and thrombolytic enzyme activity. Benefiting from a customized magnetic operation system designed for animal experiments and preclinical development, these agglomeration‐free NPs can assemble into micro‐/milli‐scale swarms capable of robust maneuver and reconfigurable transformation for on‐demand tasks in complex biofluids. Specifically, the spinning mode of the swarm exerts focused fluid shear stresses while rubbing on the thrombus surface, constituting a mechanical force for clot breakdown. The synergy of the NPs’ inherent enzymatic effect and swarming‐triggered fluid forces enables amplified efficacy of thrombolysis in an in vivo occlusion model of rabbit carotid artery, using lower drug concentration than clinical dosage. Furthermore, swarming‐enhanced ultrasound signals aid in imaging‐guided treatment. Therefore, the pharmacomechanical NP swarms herein represent an injectable thrombolytic tool joining advantages of intravenous drug therapy and robotic intervention. An injectable thrombolytic tool for fast thrombolysis in vivo using low drug dosage is reported, highlighting synergistic pharmacomechanical function of integrated enzyme‐magnetite (rtPA‐Fe3O4) nanoparticle swarms in rabbit carotid artery.</description><subject>Biocompatibility</subject><subject>Carotid arteries</subject><subject>Chemical compounds</subject><subject>Chemotherapy</subject><subject>Dosage</subject><subject>Drug dosages</subject><subject>enzyme</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Iron oxides</subject><subject>magnetic manipulation</subject><subject>Magnetite</subject><subject>magnetite nanoparticles</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Occlusion</subject><subject>Pharmacology</subject><subject>Rubbing</subject><subject>Shear stress</subject><subject>swarm control</subject><subject>Swarming</subject><subject>Task complexity</subject><subject>thrombolysis</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LHEEQhocQIUZzzbnBSy676a_56KMYV4XRCGvOTU1PzW5LT_eme5ZlPIm_IL8xvySjGwzkIhRUQT1PUfBm2WdG54xS_jX1zs055VNVsnqXHbKCiVlRcfX-dWb0Q_YxpXtKBeOyPMyelqPHuLJpsIZc-QFXEQYbPAHfkts1xB5M6NGswVsDjiy23rzsQ0fO_cPY4-_HX9ew8jjYAckN-LCBOB1zSJa7SU-kC5HUYTdx30JCsoA0kLt1DH0T3JhsOs4OOnAJP_3tR9mPxfnd2eWs_n5xdXZaz4xQtJo1lAmOLQgGUuWKd23ZyAaZlDnlZVe2ragoSpOjqAxK2UhmoKUgS9MykbfiKPuyv7uJ4ecW06B7mww6Bx7DNmleqKIqpKRqQk_-Q-_DNvrpO81Lmqui4EpO1HxPmRhSitjpTbQ9xFEzqp8j0c-R6NdIJkHthZ11OL5B6-V1Xf9z_wDI-5Si</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Tang, Xiuzhen</creator><creator>Manamanchaiyaporn, Laliphat</creator><creator>Zhou, Qi</creator><creator>Huang, Chenyang</creator><creator>Li, Lihuang</creator><creator>Li, Ziqiao</creator><creator>Wang, Longchen</creator><creator>Wang, Jienan</creator><creator>Ren, Lei</creator><creator>Xu, Tiantian</creator><creator>Yan, Xiaohui</creator><creator>Zheng, Yuanyi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3560-2311</orcidid><orcidid>https://orcid.org/0000-0001-6089-0664</orcidid><orcidid>https://orcid.org/0000-0002-1328-0641</orcidid></search><sort><creationdate>20220801</creationdate><title>Synergistic Integration and Pharmacomechanical Function of Enzyme‐Magnetite Nanoparticle Swarms for Low‐Dose Fast Thrombolysis</title><author>Tang, Xiuzhen ; Manamanchaiyaporn, Laliphat ; Zhou, Qi ; Huang, Chenyang ; Li, Lihuang ; Li, Ziqiao ; Wang, Longchen ; Wang, Jienan ; Ren, Lei ; Xu, Tiantian ; Yan, Xiaohui ; Zheng, Yuanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-b0132eda31a49592fd7b4be1445027f7dd380e4c5e38ce44b41cad0a47cd135d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Carotid arteries</topic><topic>Chemical compounds</topic><topic>Chemotherapy</topic><topic>Dosage</topic><topic>Drug dosages</topic><topic>enzyme</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Iron oxides</topic><topic>magnetic manipulation</topic><topic>Magnetite</topic><topic>magnetite nanoparticles</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Occlusion</topic><topic>Pharmacology</topic><topic>Rubbing</topic><topic>Shear stress</topic><topic>swarm control</topic><topic>Swarming</topic><topic>Task complexity</topic><topic>thrombolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xiuzhen</creatorcontrib><creatorcontrib>Manamanchaiyaporn, Laliphat</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Huang, Chenyang</creatorcontrib><creatorcontrib>Li, Lihuang</creatorcontrib><creatorcontrib>Li, Ziqiao</creatorcontrib><creatorcontrib>Wang, Longchen</creatorcontrib><creatorcontrib>Wang, Jienan</creatorcontrib><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Xu, Tiantian</creatorcontrib><creatorcontrib>Yan, Xiaohui</creatorcontrib><creatorcontrib>Zheng, Yuanyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xiuzhen</au><au>Manamanchaiyaporn, Laliphat</au><au>Zhou, Qi</au><au>Huang, Chenyang</au><au>Li, Lihuang</au><au>Li, Ziqiao</au><au>Wang, Longchen</au><au>Wang, Jienan</au><au>Ren, Lei</au><au>Xu, Tiantian</au><au>Yan, Xiaohui</au><au>Zheng, Yuanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Integration and Pharmacomechanical Function of Enzyme‐Magnetite Nanoparticle Swarms for Low‐Dose Fast Thrombolysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>18</volume><issue>34</issue><spage>e2202848</spage><epage>n/a</epage><pages>e2202848-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Magnetic micro‐/nanoparticles are extensively explored over the past decade as active diagnostic/therapeutic agents for minimally invasive medicine. However, sufficient function integration on these miniaturized bodies toward practical applications remains challenging. This work proposes a synergistic strategy via integrating particle functionalization and bioinspired swarming, demonstrated by recombinant tissue plasminogen activator modified magnetite nanoparticles (rtPA‐Fe3O4 NPs) for fast thrombolysis in vivo with low drug dosage. The synthesized rtPA‐Fe3O4 NPs exhibit superior magnetic performance, high biocompatibility, and thrombolytic enzyme activity. Benefiting from a customized magnetic operation system designed for animal experiments and preclinical development, these agglomeration‐free NPs can assemble into micro‐/milli‐scale swarms capable of robust maneuver and reconfigurable transformation for on‐demand tasks in complex biofluids. Specifically, the spinning mode of the swarm exerts focused fluid shear stresses while rubbing on the thrombus surface, constituting a mechanical force for clot breakdown. The synergy of the NPs’ inherent enzymatic effect and swarming‐triggered fluid forces enables amplified efficacy of thrombolysis in an in vivo occlusion model of rabbit carotid artery, using lower drug concentration than clinical dosage. Furthermore, swarming‐enhanced ultrasound signals aid in imaging‐guided treatment. Therefore, the pharmacomechanical NP swarms herein represent an injectable thrombolytic tool joining advantages of intravenous drug therapy and robotic intervention. An injectable thrombolytic tool for fast thrombolysis in vivo using low drug dosage is reported, highlighting synergistic pharmacomechanical function of integrated enzyme‐magnetite (rtPA‐Fe3O4) nanoparticle swarms in rabbit carotid artery.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202202848</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3560-2311</orcidid><orcidid>https://orcid.org/0000-0001-6089-0664</orcidid><orcidid>https://orcid.org/0000-0002-1328-0641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-08, Vol.18 (34), p.e2202848-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2696864409
source Wiley Online Library
subjects Biocompatibility
Carotid arteries
Chemical compounds
Chemotherapy
Dosage
Drug dosages
enzyme
Enzyme activity
Enzymes
Iron oxides
magnetic manipulation
Magnetite
magnetite nanoparticles
Nanoparticles
Nanotechnology
Occlusion
Pharmacology
Rubbing
Shear stress
swarm control
Swarming
Task complexity
thrombolysis
title Synergistic Integration and Pharmacomechanical Function of Enzyme‐Magnetite Nanoparticle Swarms for Low‐Dose Fast Thrombolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Integration%20and%20Pharmacomechanical%20Function%20of%20Enzyme%E2%80%90Magnetite%20Nanoparticle%20Swarms%20for%20Low%E2%80%90Dose%20Fast%20Thrombolysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tang,%20Xiuzhen&rft.date=2022-08-01&rft.volume=18&rft.issue=34&rft.spage=e2202848&rft.epage=n/a&rft.pages=e2202848-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202202848&rft_dat=%3Cproquest_cross%3E2705966294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705966294&rft_id=info:pmid/&rfr_iscdi=true