Earthquake stress drop and laboratory-inferred interseismic strength recovery

We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory‐measured fault strength. We assume that repeating earthquakes can be simulated by stick‐slip sliding using a spring and slider block model. Simulations with static/kinetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2001-12, Vol.106 (B12), p.30701-30713
Hauptverfasser: Beeler, N. M., Hickman, S. H., Wong, T.‐f.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30713
container_issue B12
container_start_page 30701
container_title Journal of Geophysical Research
container_volume 106
creator Beeler, N. M.
Hickman, S. H.
Wong, T.‐f.
description We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory‐measured fault strength. We assume that repeating earthquakes can be simulated by stick‐slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time‐dependent strength, and rate‐ and state‐variable‐dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL∝trn where n≈−1. Deviations from n=−1 arise from second order effects on strength, with n>−1 corresponding to apparent time‐dependent strengthening and n
doi_str_mv 10.1029/2000JB900242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26954686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26944315</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5345-c19d7195f77b71eeb9707374c71b244422685a28089dd1d099eb3f14174608813</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EEqvSW39ALvREYDy24_jYlrKw6ofUj-VoOcmEmmaT7TgL7L8nZSvghDjN5XlevfMKcSDhrQR07xAAFscOADU-EzOUpsgRAZ-LGUhd5oBoX4r9lL5OIGhTaJAzcX4aeLx72IR7ytLIlFLW8LDOQt9kXagGDuPA2zz2LTFTk8V-JE4U0yrWv4T-y3iXMdXDN-LtK_GiDV2i_ae7J24_nN6cfMzPLuefTo7O8mCUNnktXWOlM621lZVElbNgldW1lRVqrRGL0gQsoXRNIxtwjirVSi2tLqAspdoTh7vcNQ8PG0qjX8VUU9eFnoZN8lg4o4uy-B9QayXNBL7ZgTUPKTG1fs1xFXjrJfjHff3f-07466fckOrQtRz6OqY_jpqeALQTp3bc99jR9p-ZfjG_OpZo1GOZfGfFNNKP31bge19MOxn_-WLuz6_fL5bLi6V36icWeZa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26944315</pqid></control><display><type>article</type><title>Earthquake stress drop and laboratory-inferred interseismic strength recovery</title><source>Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Alma/SFX Local Collection</source><source>Wiley Blackwell Journals</source><creator>Beeler, N. M. ; Hickman, S. H. ; Wong, T.‐f.</creator><creatorcontrib>Beeler, N. M. ; Hickman, S. H. ; Wong, T.‐f.</creatorcontrib><description>We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory‐measured fault strength. We assume that repeating earthquakes can be simulated by stick‐slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time‐dependent strength, and rate‐ and state‐variable‐dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL∝trn where n≈−1. Deviations from n=−1 arise from second order effects on strength, with n&gt;−1 corresponding to apparent time‐dependent strengthening and n&lt;−1 corresponding to weakening. Simulations with rate and state‐variable equations show that dynamic shear stress drop Δτd scales with recurrence as dΔτd/dlntr≤σe(b‐a), where σe is the effective normal stress, μ=τ/σe, and (a‐b)=dμss/dlnV is the steady‐state slip rate dependence of strength. In addition, accounting for seismic energy radiation, we suggest that the static shear stress drop Δτs scales as dΔτs/dlntr≤σe(1 +ζ)(b‐a), where ζ is the fractional overshoot. The variation of Δτs with lntr for earthquake stress drops is somewhat larger than implied by room temperature laboratory values of ζ and b‐a. However, the uncertainty associated with the seismic data is large and the discrepancy between the seismic observations and the rate of strengthening predicted by room temperature experiments is less than an order of magnitude.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2000JB900242</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Exact sciences and technology ; Internal geophysics</subject><ispartof>Journal of Geophysical Research, 2001-12, Vol.106 (B12), p.30701-30713</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5345-c19d7195f77b71eeb9707374c71b244422685a28089dd1d099eb3f14174608813</citedby><cites>FETCH-LOGICAL-a5345-c19d7195f77b71eeb9707374c71b244422685a28089dd1d099eb3f14174608813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000JB900242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000JB900242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11516,27926,27927,45576,45577,46411,46470,46835,46894</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13442027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beeler, N. M.</creatorcontrib><creatorcontrib>Hickman, S. H.</creatorcontrib><creatorcontrib>Wong, T.‐f.</creatorcontrib><title>Earthquake stress drop and laboratory-inferred interseismic strength recovery</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory‐measured fault strength. We assume that repeating earthquakes can be simulated by stick‐slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time‐dependent strength, and rate‐ and state‐variable‐dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL∝trn where n≈−1. Deviations from n=−1 arise from second order effects on strength, with n&gt;−1 corresponding to apparent time‐dependent strengthening and n&lt;−1 corresponding to weakening. Simulations with rate and state‐variable equations show that dynamic shear stress drop Δτd scales with recurrence as dΔτd/dlntr≤σe(b‐a), where σe is the effective normal stress, μ=τ/σe, and (a‐b)=dμss/dlnV is the steady‐state slip rate dependence of strength. In addition, accounting for seismic energy radiation, we suggest that the static shear stress drop Δτs scales as dΔτs/dlntr≤σe(1 +ζ)(b‐a), where ζ is the fractional overshoot. The variation of Δτs with lntr for earthquake stress drops is somewhat larger than implied by room temperature laboratory values of ζ and b‐a. However, the uncertainty associated with the seismic data is large and the discrepancy between the seismic observations and the rate of strengthening predicted by room temperature experiments is less than an order of magnitude.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAQhi0EEqvSW39ALvREYDy24_jYlrKw6ofUj-VoOcmEmmaT7TgL7L8nZSvghDjN5XlevfMKcSDhrQR07xAAFscOADU-EzOUpsgRAZ-LGUhd5oBoX4r9lL5OIGhTaJAzcX4aeLx72IR7ytLIlFLW8LDOQt9kXagGDuPA2zz2LTFTk8V-JE4U0yrWv4T-y3iXMdXDN-LtK_GiDV2i_ae7J24_nN6cfMzPLuefTo7O8mCUNnktXWOlM621lZVElbNgldW1lRVqrRGL0gQsoXRNIxtwjirVSi2tLqAspdoTh7vcNQ8PG0qjX8VUU9eFnoZN8lg4o4uy-B9QayXNBL7ZgTUPKTG1fs1xFXjrJfjHff3f-07466fckOrQtRz6OqY_jpqeALQTp3bc99jR9p-ZfjG_OpZo1GOZfGfFNNKP31bge19MOxn_-WLuz6_fL5bLi6V36icWeZa8</recordid><startdate>20011210</startdate><enddate>20011210</enddate><creator>Beeler, N. M.</creator><creator>Hickman, S. H.</creator><creator>Wong, T.‐f.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20011210</creationdate><title>Earthquake stress drop and laboratory-inferred interseismic strength recovery</title><author>Beeler, N. M. ; Hickman, S. H. ; Wong, T.‐f.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5345-c19d7195f77b71eeb9707374c71b244422685a28089dd1d099eb3f14174608813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beeler, N. M.</creatorcontrib><creatorcontrib>Hickman, S. H.</creatorcontrib><creatorcontrib>Wong, T.‐f.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beeler, N. M.</au><au>Hickman, S. H.</au><au>Wong, T.‐f.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Earthquake stress drop and laboratory-inferred interseismic strength recovery</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2001-12-10</date><risdate>2001</risdate><volume>106</volume><issue>B12</issue><spage>30701</spage><epage>30713</epage><pages>30701-30713</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory‐measured fault strength. We assume that repeating earthquakes can be simulated by stick‐slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time‐dependent strength, and rate‐ and state‐variable‐dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL∝trn where n≈−1. Deviations from n=−1 arise from second order effects on strength, with n&gt;−1 corresponding to apparent time‐dependent strengthening and n&lt;−1 corresponding to weakening. Simulations with rate and state‐variable equations show that dynamic shear stress drop Δτd scales with recurrence as dΔτd/dlntr≤σe(b‐a), where σe is the effective normal stress, μ=τ/σe, and (a‐b)=dμss/dlnV is the steady‐state slip rate dependence of strength. In addition, accounting for seismic energy radiation, we suggest that the static shear stress drop Δτs scales as dΔτs/dlntr≤σe(1 +ζ)(b‐a), where ζ is the fractional overshoot. The variation of Δτs with lntr for earthquake stress drops is somewhat larger than implied by room temperature laboratory values of ζ and b‐a. However, the uncertainty associated with the seismic data is large and the discrepancy between the seismic observations and the rate of strengthening predicted by room temperature experiments is less than an order of magnitude.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000JB900242</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2001-12, Vol.106 (B12), p.30701-30713
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_26954686
source Wiley Online Library; Wiley-Blackwell AGU Digital Archive; Alma/SFX Local Collection; Wiley Blackwell Journals
subjects Earth sciences
Earth, ocean, space
Earthquakes, seismology
Exact sciences and technology
Internal geophysics
title Earthquake stress drop and laboratory-inferred interseismic strength recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Earthquake%20stress%20drop%20and%20laboratory-inferred%20interseismic%20strength%20recovery&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Beeler,%20N.%20M.&rft.date=2001-12-10&rft.volume=106&rft.issue=B12&rft.spage=30701&rft.epage=30713&rft.pages=30701-30713&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2000JB900242&rft_dat=%3Cproquest_cross%3E26944315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26944315&rft_id=info:pmid/&rfr_iscdi=true