Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries

Anionic charge compensation creates conditions for realizing high capacity and energy density of Li-ion batteries cathode materials. However, the issues of voltage hysteresis, capacity attenuation, and structure transformation caused by the labile anionic redox are still difficult to solve fundament...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-08, Vol.14 (31), p.35822-35832
Hauptverfasser: Yang, Zhe, Zhong, Jianjian, Zheng, Chaoliang, Wei, Zhicheng, Feng, Jiameng, Li, Jianling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35832
container_issue 31
container_start_page 35822
container_title ACS applied materials & interfaces
container_volume 14
creator Yang, Zhe
Zhong, Jianjian
Zheng, Chaoliang
Wei, Zhicheng
Feng, Jiameng
Li, Jianling
description Anionic charge compensation creates conditions for realizing high capacity and energy density of Li-ion batteries cathode materials. However, the issues of voltage hysteresis, capacity attenuation, and structure transformation caused by the labile anionic redox are still difficult to solve fundamentally. The superstructure formed by a Li–Mn ordered arrangement is the intrinsic reason to trigger the anionic charge compensation. In this work, manganese-based cathode materials with series of Li–Mn ordered superstructure types have been prepared by an ion exchange method, and superstructure control of the anionic redox behavior has been synthetically investigated. With the dispersion of a LiMn6 superstructure unit, the aggregation of Li vacancies in Mn slab is gradually inhibited, which eliminates the production of O–O dimers and improves the reversibility of oxygen redox. Therefore, the voltage hysteresis and capacity fading have been significantly improved. Meanwhile, the amount of reactive oxygen species and their capacity contribution is reduced, and the sluggish electrochemical reaction kinetics of anion requires a low current density to boost the high-capacity advantage. This paper provides effective ideas for the design of various superstructures and the rational utilization of anionic redox.
doi_str_mv 10.1021/acsami.2c09779
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2695287039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695287039</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-9367bd47a4b6ced06da5d26badac8ba35b55c49ac21904976e57bd32cfe577fb3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxRdRsFavnnMUYWs2m2yao138KFQEP87LbJK1KdukJlnR_96ULd48zePNb4aZl2WXBZ4VmBQ3IANszYxILDgXR9mkEJTmc8LI8Z-m9DQ7C2GDcVUSzCbZ5nXYaR-iH2QcvEa1s9G7HrkO3VrjrJHoRSv3jRZ6DV_GeWQsegL7AVYHnS8gaIVqiGundPKj9gb6gLoErky-dBYtIO5dHc6zky719MWhTrP3-7u3-jFfPT8s69tVDiXmMRdlxVtFOdC2klrhSgFTpGpBgZy3ULKWMUkFSFIITAWvNEt8SWSXBO_acppdjXt33n0OOsRma4LUfZ9OdkNoSCUYmXNcioTORlR6F4LXXbPzZgv-pylwsw-1GUNtDqGmgetxIPnNxg3epk_-g38BocN7Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695287039</pqid></control><display><type>article</type><title>Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries</title><source>ACS Publications</source><creator>Yang, Zhe ; Zhong, Jianjian ; Zheng, Chaoliang ; Wei, Zhicheng ; Feng, Jiameng ; Li, Jianling</creator><creatorcontrib>Yang, Zhe ; Zhong, Jianjian ; Zheng, Chaoliang ; Wei, Zhicheng ; Feng, Jiameng ; Li, Jianling</creatorcontrib><description>Anionic charge compensation creates conditions for realizing high capacity and energy density of Li-ion batteries cathode materials. However, the issues of voltage hysteresis, capacity attenuation, and structure transformation caused by the labile anionic redox are still difficult to solve fundamentally. The superstructure formed by a Li–Mn ordered arrangement is the intrinsic reason to trigger the anionic charge compensation. In this work, manganese-based cathode materials with series of Li–Mn ordered superstructure types have been prepared by an ion exchange method, and superstructure control of the anionic redox behavior has been synthetically investigated. With the dispersion of a LiMn6 superstructure unit, the aggregation of Li vacancies in Mn slab is gradually inhibited, which eliminates the production of O–O dimers and improves the reversibility of oxygen redox. Therefore, the voltage hysteresis and capacity fading have been significantly improved. Meanwhile, the amount of reactive oxygen species and their capacity contribution is reduced, and the sluggish electrochemical reaction kinetics of anion requires a low current density to boost the high-capacity advantage. This paper provides effective ideas for the design of various superstructures and the rational utilization of anionic redox.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c09779</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-08, Vol.14 (31), p.35822-35832</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-9367bd47a4b6ced06da5d26badac8ba35b55c49ac21904976e57bd32cfe577fb3</citedby><cites>FETCH-LOGICAL-a307t-9367bd47a4b6ced06da5d26badac8ba35b55c49ac21904976e57bd32cfe577fb3</cites><orcidid>0000-0002-3915-9540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c09779$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c09779$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Zhong, Jianjian</creatorcontrib><creatorcontrib>Zheng, Chaoliang</creatorcontrib><creatorcontrib>Wei, Zhicheng</creatorcontrib><creatorcontrib>Feng, Jiameng</creatorcontrib><creatorcontrib>Li, Jianling</creatorcontrib><title>Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Anionic charge compensation creates conditions for realizing high capacity and energy density of Li-ion batteries cathode materials. However, the issues of voltage hysteresis, capacity attenuation, and structure transformation caused by the labile anionic redox are still difficult to solve fundamentally. The superstructure formed by a Li–Mn ordered arrangement is the intrinsic reason to trigger the anionic charge compensation. In this work, manganese-based cathode materials with series of Li–Mn ordered superstructure types have been prepared by an ion exchange method, and superstructure control of the anionic redox behavior has been synthetically investigated. With the dispersion of a LiMn6 superstructure unit, the aggregation of Li vacancies in Mn slab is gradually inhibited, which eliminates the production of O–O dimers and improves the reversibility of oxygen redox. Therefore, the voltage hysteresis and capacity fading have been significantly improved. Meanwhile, the amount of reactive oxygen species and their capacity contribution is reduced, and the sluggish electrochemical reaction kinetics of anion requires a low current density to boost the high-capacity advantage. This paper provides effective ideas for the design of various superstructures and the rational utilization of anionic redox.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxRdRsFavnnMUYWs2m2yao138KFQEP87LbJK1KdukJlnR_96ULd48zePNb4aZl2WXBZ4VmBQ3IANszYxILDgXR9mkEJTmc8LI8Z-m9DQ7C2GDcVUSzCbZ5nXYaR-iH2QcvEa1s9G7HrkO3VrjrJHoRSv3jRZ6DV_GeWQsegL7AVYHnS8gaIVqiGundPKj9gb6gLoErky-dBYtIO5dHc6zky719MWhTrP3-7u3-jFfPT8s69tVDiXmMRdlxVtFOdC2klrhSgFTpGpBgZy3ULKWMUkFSFIITAWvNEt8SWSXBO_acppdjXt33n0OOsRma4LUfZ9OdkNoSCUYmXNcioTORlR6F4LXXbPzZgv-pylwsw-1GUNtDqGmgetxIPnNxg3epk_-g38BocN7Sw</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Yang, Zhe</creator><creator>Zhong, Jianjian</creator><creator>Zheng, Chaoliang</creator><creator>Wei, Zhicheng</creator><creator>Feng, Jiameng</creator><creator>Li, Jianling</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3915-9540</orcidid></search><sort><creationdate>20220810</creationdate><title>Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries</title><author>Yang, Zhe ; Zhong, Jianjian ; Zheng, Chaoliang ; Wei, Zhicheng ; Feng, Jiameng ; Li, Jianling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-9367bd47a4b6ced06da5d26badac8ba35b55c49ac21904976e57bd32cfe577fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Zhong, Jianjian</creatorcontrib><creatorcontrib>Zheng, Chaoliang</creatorcontrib><creatorcontrib>Wei, Zhicheng</creatorcontrib><creatorcontrib>Feng, Jiameng</creatorcontrib><creatorcontrib>Li, Jianling</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhe</au><au>Zhong, Jianjian</au><au>Zheng, Chaoliang</au><au>Wei, Zhicheng</au><au>Feng, Jiameng</au><au>Li, Jianling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-08-10</date><risdate>2022</risdate><volume>14</volume><issue>31</issue><spage>35822</spage><epage>35832</epage><pages>35822-35832</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Anionic charge compensation creates conditions for realizing high capacity and energy density of Li-ion batteries cathode materials. However, the issues of voltage hysteresis, capacity attenuation, and structure transformation caused by the labile anionic redox are still difficult to solve fundamentally. The superstructure formed by a Li–Mn ordered arrangement is the intrinsic reason to trigger the anionic charge compensation. In this work, manganese-based cathode materials with series of Li–Mn ordered superstructure types have been prepared by an ion exchange method, and superstructure control of the anionic redox behavior has been synthetically investigated. With the dispersion of a LiMn6 superstructure unit, the aggregation of Li vacancies in Mn slab is gradually inhibited, which eliminates the production of O–O dimers and improves the reversibility of oxygen redox. Therefore, the voltage hysteresis and capacity fading have been significantly improved. Meanwhile, the amount of reactive oxygen species and their capacity contribution is reduced, and the sluggish electrochemical reaction kinetics of anion requires a low current density to boost the high-capacity advantage. This paper provides effective ideas for the design of various superstructures and the rational utilization of anionic redox.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c09779</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3915-9540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-08, Vol.14 (31), p.35822-35832
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2695287039
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T08%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superstructure%20Control%20of%20Anionic%20Redox%20Behavior%20in%20Manganese-Based%20Cathode%20Materials%20for%20Li-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Zhe&rft.date=2022-08-10&rft.volume=14&rft.issue=31&rft.spage=35822&rft.epage=35832&rft.pages=35822-35832&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c09779&rft_dat=%3Cproquest_cross%3E2695287039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695287039&rft_id=info:pmid/&rfr_iscdi=true