An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing
The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana pl...
Gespeichert in:
Veröffentlicht in: | Biochemistry and molecular biology education 2022-09, Vol.50 (5), p.537-546 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 5 |
container_start_page | 537 |
container_title | Biochemistry and molecular biology education |
container_volume | 50 |
creator | Mayta, Martín L. Dotto, Marcela Orellano, Elena G. Krapp, Adriana R. |
description | The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment. |
doi_str_mv | 10.1002/bmb.21659 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2695286055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1349444</ericid><sourcerecordid>2695286055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3359-abec61238745148564f55afcf6a5c465d94a5854c02efc4c15bc94b224f5c09d3</originalsourceid><addsrcrecordid>eNp1kcFu1TAQRS0EoqWw4ANAltjAIn2240lidu1TgaIiUIF15DiTNlUSB9tReTs-gSXfx5cwkNIFEitbmjP3-voy9liKQymE2jRjc6hkAeYO25eQmyzXytyluy5FVskS9tiDGK8EsYUu77O9HCqjpYJ99uNo4vh1xtCPOCU78Dn45J0feOcDT2jdZT9d8O356ccP55utjYb3E7d89jH9_Pb9Ith2sQn5PNgp8cE2Ptjkw447v4SILznp28kOu9hH7js-LolA2sS2T9iue5Ff9-nSL4lH_LLg5MjyIbvX2SHio5vzgH1-dfJp-yY7e__6dHt0lrk8B5PZBl0hVV6VGqSuoNAdgO1cV1hwuoDWaAsVaCcUdk47CY0zulGKOCdMmx-w56suBSfvmOqxjw4Hehf6JdaqMKCqQgAQ-uwf9IpCUjiiSllK0FIKol6slAs-xoBdPdPn2rCrpah_11VTXfWfuoh9eqO4NCO2t-Tffgh4sgJUkLsdn7yVuTZaa5pv1vl1P-Du_0718bvj1fIXXsirfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717154110</pqid></control><display><type>article</type><title>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Education Source</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mayta, Martín L. ; Dotto, Marcela ; Orellano, Elena G. ; Krapp, Adriana R.</creator><creatorcontrib>Mayta, Martín L. ; Dotto, Marcela ; Orellano, Elena G. ; Krapp, Adriana R.</creatorcontrib><description>The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.</description><identifier>ISSN: 1470-8175</identifier><identifier>EISSN: 1539-3429</identifier><identifier>DOI: 10.1002/bmb.21659</identifier><identifier>PMID: 35894125</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>arabidopsis ; Arabidopsis - genetics ; Bioinformatics ; Cas9 ; College Science ; Conformation ; CRISPR ; CRISPR-Cas Systems - genetics ; Desaturase ; DNA, Single-Stranded ; Editing ; Gel electrophoresis ; Gene Editing - methods ; Genetic transformation ; Genome editing ; Graduate Study ; Humans ; Laboratories ; Laboratory Experiments ; Mosaicism ; Mutants ; PDS3 ; Phenotypes ; Plants (Botany) ; Plants, Genetically Modified - genetics ; Polyacrylamide ; RNA, Guide, CRISPR-Cas Systems - genetics ; Science Education ; Science Instruction ; Science Laboratories ; Silver nitrate ; SSCP ; Teaching Methods ; Visualization</subject><ispartof>Biochemistry and molecular biology education, 2022-09, Vol.50 (5), p.537-546</ispartof><rights>2022 International Union of Biochemistry and Molecular Biology.</rights><rights>2022 The International Union of Biochemistry and Molecular Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3359-abec61238745148564f55afcf6a5c465d94a5854c02efc4c15bc94b224f5c09d3</cites><orcidid>0000-0002-3088-7576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbmb.21659$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbmb.21659$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1349444$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35894125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayta, Martín L.</creatorcontrib><creatorcontrib>Dotto, Marcela</creatorcontrib><creatorcontrib>Orellano, Elena G.</creatorcontrib><creatorcontrib>Krapp, Adriana R.</creatorcontrib><title>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</title><title>Biochemistry and molecular biology education</title><addtitle>Biochem Mol Biol Educ</addtitle><description>The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.</description><subject>arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Bioinformatics</subject><subject>Cas9</subject><subject>College Science</subject><subject>Conformation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Desaturase</subject><subject>DNA, Single-Stranded</subject><subject>Editing</subject><subject>Gel electrophoresis</subject><subject>Gene Editing - methods</subject><subject>Genetic transformation</subject><subject>Genome editing</subject><subject>Graduate Study</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Laboratory Experiments</subject><subject>Mosaicism</subject><subject>Mutants</subject><subject>PDS3</subject><subject>Phenotypes</subject><subject>Plants (Botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polyacrylamide</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Science Education</subject><subject>Science Instruction</subject><subject>Science Laboratories</subject><subject>Silver nitrate</subject><subject>SSCP</subject><subject>Teaching Methods</subject><subject>Visualization</subject><issn>1470-8175</issn><issn>1539-3429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1TAQRS0EoqWw4ANAltjAIn2240lidu1TgaIiUIF15DiTNlUSB9tReTs-gSXfx5cwkNIFEitbmjP3-voy9liKQymE2jRjc6hkAeYO25eQmyzXytyluy5FVskS9tiDGK8EsYUu77O9HCqjpYJ99uNo4vh1xtCPOCU78Dn45J0feOcDT2jdZT9d8O356ccP55utjYb3E7d89jH9_Pb9Ith2sQn5PNgp8cE2Ptjkw447v4SILznp28kOu9hH7js-LolA2sS2T9iue5Ff9-nSL4lH_LLg5MjyIbvX2SHio5vzgH1-dfJp-yY7e__6dHt0lrk8B5PZBl0hVV6VGqSuoNAdgO1cV1hwuoDWaAsVaCcUdk47CY0zulGKOCdMmx-w56suBSfvmOqxjw4Hehf6JdaqMKCqQgAQ-uwf9IpCUjiiSllK0FIKol6slAs-xoBdPdPn2rCrpah_11VTXfWfuoh9eqO4NCO2t-Tffgh4sgJUkLsdn7yVuTZaa5pv1vl1P-Du_0718bvj1fIXXsirfA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Mayta, Martín L.</creator><creator>Dotto, Marcela</creator><creator>Orellano, Elena G.</creator><creator>Krapp, Adriana R.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3088-7576</orcidid></search><sort><creationdate>202209</creationdate><title>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</title><author>Mayta, Martín L. ; Dotto, Marcela ; Orellano, Elena G. ; Krapp, Adriana R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3359-abec61238745148564f55afcf6a5c465d94a5854c02efc4c15bc94b224f5c09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Bioinformatics</topic><topic>Cas9</topic><topic>College Science</topic><topic>Conformation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Desaturase</topic><topic>DNA, Single-Stranded</topic><topic>Editing</topic><topic>Gel electrophoresis</topic><topic>Gene Editing - methods</topic><topic>Genetic transformation</topic><topic>Genome editing</topic><topic>Graduate Study</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Laboratory Experiments</topic><topic>Mosaicism</topic><topic>Mutants</topic><topic>PDS3</topic><topic>Phenotypes</topic><topic>Plants (Botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polyacrylamide</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Science Education</topic><topic>Science Instruction</topic><topic>Science Laboratories</topic><topic>Silver nitrate</topic><topic>SSCP</topic><topic>Teaching Methods</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayta, Martín L.</creatorcontrib><creatorcontrib>Dotto, Marcela</creatorcontrib><creatorcontrib>Orellano, Elena G.</creatorcontrib><creatorcontrib>Krapp, Adriana R.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry and molecular biology education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayta, Martín L.</au><au>Dotto, Marcela</au><au>Orellano, Elena G.</au><au>Krapp, Adriana R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1349444</ericid><atitle>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</atitle><jtitle>Biochemistry and molecular biology education</jtitle><addtitle>Biochem Mol Biol Educ</addtitle><date>2022-09</date><risdate>2022</risdate><volume>50</volume><issue>5</issue><spage>537</spage><epage>546</epage><pages>537-546</pages><issn>1470-8175</issn><eissn>1539-3429</eissn><abstract>The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>35894125</pmid><doi>10.1002/bmb.21659</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3088-7576</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1470-8175 |
ispartof | Biochemistry and molecular biology education, 2022-09, Vol.50 (5), p.537-546 |
issn | 1470-8175 1539-3429 |
language | eng |
recordid | cdi_proquest_miscellaneous_2695286055 |
source | Wiley Free Content; MEDLINE; Education Source; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | arabidopsis Arabidopsis - genetics Bioinformatics Cas9 College Science Conformation CRISPR CRISPR-Cas Systems - genetics Desaturase DNA, Single-Stranded Editing Gel electrophoresis Gene Editing - methods Genetic transformation Genome editing Graduate Study Humans Laboratories Laboratory Experiments Mosaicism Mutants PDS3 Phenotypes Plants (Botany) Plants, Genetically Modified - genetics Polyacrylamide RNA, Guide, CRISPR-Cas Systems - genetics Science Education Science Instruction Science Laboratories Silver nitrate SSCP Teaching Methods Visualization |
title | An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20protocol%20for%20teaching%20CRISPR/Cas9%20in%20a%20post%E2%80%90graduate%20plant%20laboratory%20course:%20An%20analysis%20of%20mutant%E2%80%90edited%20plants%20without%20sequencing&rft.jtitle=Biochemistry%20and%20molecular%20biology%20education&rft.au=Mayta,%20Mart%C3%ADn%20L.&rft.date=2022-09&rft.volume=50&rft.issue=5&rft.spage=537&rft.epage=546&rft.pages=537-546&rft.issn=1470-8175&rft.eissn=1539-3429&rft_id=info:doi/10.1002/bmb.21659&rft_dat=%3Cproquest_cross%3E2695286055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717154110&rft_id=info:pmid/35894125&rft_ericid=EJ1349444&rfr_iscdi=true |