An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing

The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry and molecular biology education 2022-09, Vol.50 (5), p.537-546
Hauptverfasser: Mayta, Martín L., Dotto, Marcela, Orellano, Elena G., Krapp, Adriana R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 5
container_start_page 537
container_title Biochemistry and molecular biology education
container_volume 50
creator Mayta, Martín L.
Dotto, Marcela
Orellano, Elena G.
Krapp, Adriana R.
description The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.
doi_str_mv 10.1002/bmb.21659
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2695286055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1349444</ericid><sourcerecordid>2695286055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3359-abec61238745148564f55afcf6a5c465d94a5854c02efc4c15bc94b224f5c09d3</originalsourceid><addsrcrecordid>eNp1kcFu1TAQRS0EoqWw4ANAltjAIn2240lidu1TgaIiUIF15DiTNlUSB9tReTs-gSXfx5cwkNIFEitbmjP3-voy9liKQymE2jRjc6hkAeYO25eQmyzXytyluy5FVskS9tiDGK8EsYUu77O9HCqjpYJ99uNo4vh1xtCPOCU78Dn45J0feOcDT2jdZT9d8O356ccP55utjYb3E7d89jH9_Pb9Ith2sQn5PNgp8cE2Ptjkw447v4SILznp28kOu9hH7js-LolA2sS2T9iue5Ff9-nSL4lH_LLg5MjyIbvX2SHio5vzgH1-dfJp-yY7e__6dHt0lrk8B5PZBl0hVV6VGqSuoNAdgO1cV1hwuoDWaAsVaCcUdk47CY0zulGKOCdMmx-w56suBSfvmOqxjw4Hehf6JdaqMKCqQgAQ-uwf9IpCUjiiSllK0FIKol6slAs-xoBdPdPn2rCrpah_11VTXfWfuoh9eqO4NCO2t-Tffgh4sgJUkLsdn7yVuTZaa5pv1vl1P-Du_0718bvj1fIXXsirfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717154110</pqid></control><display><type>article</type><title>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Education Source</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mayta, Martín L. ; Dotto, Marcela ; Orellano, Elena G. ; Krapp, Adriana R.</creator><creatorcontrib>Mayta, Martín L. ; Dotto, Marcela ; Orellano, Elena G. ; Krapp, Adriana R.</creatorcontrib><description>The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.</description><identifier>ISSN: 1470-8175</identifier><identifier>EISSN: 1539-3429</identifier><identifier>DOI: 10.1002/bmb.21659</identifier><identifier>PMID: 35894125</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>arabidopsis ; Arabidopsis - genetics ; Bioinformatics ; Cas9 ; College Science ; Conformation ; CRISPR ; CRISPR-Cas Systems - genetics ; Desaturase ; DNA, Single-Stranded ; Editing ; Gel electrophoresis ; Gene Editing - methods ; Genetic transformation ; Genome editing ; Graduate Study ; Humans ; Laboratories ; Laboratory Experiments ; Mosaicism ; Mutants ; PDS3 ; Phenotypes ; Plants (Botany) ; Plants, Genetically Modified - genetics ; Polyacrylamide ; RNA, Guide, CRISPR-Cas Systems - genetics ; Science Education ; Science Instruction ; Science Laboratories ; Silver nitrate ; SSCP ; Teaching Methods ; Visualization</subject><ispartof>Biochemistry and molecular biology education, 2022-09, Vol.50 (5), p.537-546</ispartof><rights>2022 International Union of Biochemistry and Molecular Biology.</rights><rights>2022 The International Union of Biochemistry and Molecular Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3359-abec61238745148564f55afcf6a5c465d94a5854c02efc4c15bc94b224f5c09d3</cites><orcidid>0000-0002-3088-7576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbmb.21659$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbmb.21659$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1349444$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35894125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayta, Martín L.</creatorcontrib><creatorcontrib>Dotto, Marcela</creatorcontrib><creatorcontrib>Orellano, Elena G.</creatorcontrib><creatorcontrib>Krapp, Adriana R.</creatorcontrib><title>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</title><title>Biochemistry and molecular biology education</title><addtitle>Biochem Mol Biol Educ</addtitle><description>The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.</description><subject>arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Bioinformatics</subject><subject>Cas9</subject><subject>College Science</subject><subject>Conformation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Desaturase</subject><subject>DNA, Single-Stranded</subject><subject>Editing</subject><subject>Gel electrophoresis</subject><subject>Gene Editing - methods</subject><subject>Genetic transformation</subject><subject>Genome editing</subject><subject>Graduate Study</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Laboratory Experiments</subject><subject>Mosaicism</subject><subject>Mutants</subject><subject>PDS3</subject><subject>Phenotypes</subject><subject>Plants (Botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polyacrylamide</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Science Education</subject><subject>Science Instruction</subject><subject>Science Laboratories</subject><subject>Silver nitrate</subject><subject>SSCP</subject><subject>Teaching Methods</subject><subject>Visualization</subject><issn>1470-8175</issn><issn>1539-3429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1TAQRS0EoqWw4ANAltjAIn2240lidu1TgaIiUIF15DiTNlUSB9tReTs-gSXfx5cwkNIFEitbmjP3-voy9liKQymE2jRjc6hkAeYO25eQmyzXytyluy5FVskS9tiDGK8EsYUu77O9HCqjpYJ99uNo4vh1xtCPOCU78Dn45J0feOcDT2jdZT9d8O356ccP55utjYb3E7d89jH9_Pb9Ith2sQn5PNgp8cE2Ptjkw447v4SILznp28kOu9hH7js-LolA2sS2T9iue5Ff9-nSL4lH_LLg5MjyIbvX2SHio5vzgH1-dfJp-yY7e__6dHt0lrk8B5PZBl0hVV6VGqSuoNAdgO1cV1hwuoDWaAsVaCcUdk47CY0zulGKOCdMmx-w56suBSfvmOqxjw4Hehf6JdaqMKCqQgAQ-uwf9IpCUjiiSllK0FIKol6slAs-xoBdPdPn2rCrpah_11VTXfWfuoh9eqO4NCO2t-Tffgh4sgJUkLsdn7yVuTZaa5pv1vl1P-Du_0718bvj1fIXXsirfA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Mayta, Martín L.</creator><creator>Dotto, Marcela</creator><creator>Orellano, Elena G.</creator><creator>Krapp, Adriana R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3088-7576</orcidid></search><sort><creationdate>202209</creationdate><title>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</title><author>Mayta, Martín L. ; Dotto, Marcela ; Orellano, Elena G. ; Krapp, Adriana R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3359-abec61238745148564f55afcf6a5c465d94a5854c02efc4c15bc94b224f5c09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Bioinformatics</topic><topic>Cas9</topic><topic>College Science</topic><topic>Conformation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Desaturase</topic><topic>DNA, Single-Stranded</topic><topic>Editing</topic><topic>Gel electrophoresis</topic><topic>Gene Editing - methods</topic><topic>Genetic transformation</topic><topic>Genome editing</topic><topic>Graduate Study</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Laboratory Experiments</topic><topic>Mosaicism</topic><topic>Mutants</topic><topic>PDS3</topic><topic>Phenotypes</topic><topic>Plants (Botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polyacrylamide</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Science Education</topic><topic>Science Instruction</topic><topic>Science Laboratories</topic><topic>Silver nitrate</topic><topic>SSCP</topic><topic>Teaching Methods</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayta, Martín L.</creatorcontrib><creatorcontrib>Dotto, Marcela</creatorcontrib><creatorcontrib>Orellano, Elena G.</creatorcontrib><creatorcontrib>Krapp, Adriana R.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry and molecular biology education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayta, Martín L.</au><au>Dotto, Marcela</au><au>Orellano, Elena G.</au><au>Krapp, Adriana R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1349444</ericid><atitle>An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing</atitle><jtitle>Biochemistry and molecular biology education</jtitle><addtitle>Biochem Mol Biol Educ</addtitle><date>2022-09</date><risdate>2022</risdate><volume>50</volume><issue>5</issue><spage>537</spage><epage>546</epage><pages>537-546</pages><issn>1470-8175</issn><eissn>1539-3429</eissn><abstract>The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post‐graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single‐stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35894125</pmid><doi>10.1002/bmb.21659</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3088-7576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1470-8175
ispartof Biochemistry and molecular biology education, 2022-09, Vol.50 (5), p.537-546
issn 1470-8175
1539-3429
language eng
recordid cdi_proquest_miscellaneous_2695286055
source Wiley Free Content; MEDLINE; Education Source; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects arabidopsis
Arabidopsis - genetics
Bioinformatics
Cas9
College Science
Conformation
CRISPR
CRISPR-Cas Systems - genetics
Desaturase
DNA, Single-Stranded
Editing
Gel electrophoresis
Gene Editing - methods
Genetic transformation
Genome editing
Graduate Study
Humans
Laboratories
Laboratory Experiments
Mosaicism
Mutants
PDS3
Phenotypes
Plants (Botany)
Plants, Genetically Modified - genetics
Polyacrylamide
RNA, Guide, CRISPR-Cas Systems - genetics
Science Education
Science Instruction
Science Laboratories
Silver nitrate
SSCP
Teaching Methods
Visualization
title An experimental protocol for teaching CRISPR/Cas9 in a post‐graduate plant laboratory course: An analysis of mutant‐edited plants without sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20protocol%20for%20teaching%20CRISPR/Cas9%20in%20a%20post%E2%80%90graduate%20plant%20laboratory%20course:%20An%20analysis%20of%20mutant%E2%80%90edited%20plants%20without%20sequencing&rft.jtitle=Biochemistry%20and%20molecular%20biology%20education&rft.au=Mayta,%20Mart%C3%ADn%20L.&rft.date=2022-09&rft.volume=50&rft.issue=5&rft.spage=537&rft.epage=546&rft.pages=537-546&rft.issn=1470-8175&rft.eissn=1539-3429&rft_id=info:doi/10.1002/bmb.21659&rft_dat=%3Cproquest_cross%3E2695286055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717154110&rft_id=info:pmid/35894125&rft_ericid=EJ1349444&rfr_iscdi=true