Constructing multi‐enzymatic cascade reactions for selective production of 6‐bromoindirubin from tryptophan in Escherichia coli

6‐Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin‐derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site‐specific bromination and oxidation at the indole ring. Here, we present an effic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2022-10, Vol.119 (10), p.2938-2949
Hauptverfasser: Lee, Jeongchan, Kim, Joonwon, Kim, Hyun, Park, HyunA, Kim, Jin Young, Kim, Eun‐Jung, Yang, Yung‐Hun, Choi, Kwon‐Young, Kim, Byung‐Gee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2949
container_issue 10
container_start_page 2938
container_title Biotechnology and bioengineering
container_volume 119
creator Lee, Jeongchan
Kim, Joonwon
Kim, Hyun
Park, HyunA
Kim, Jin Young
Kim, Eun‐Jung
Yang, Yung‐Hun
Choi, Kwon‐Young
Kim, Byung‐Gee
description 6‐Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin‐derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site‐specific bromination and oxidation at the indole ring. Here, we present an efficient 6BrIR production strategy in Escherichia coli by using four enzymes, that is, tryptophan 6‐halogenase fused with flavin reductase Fre (Fre‐L3‐SttH), tryptophanase (TnaA), toluene 4‐monooxygenase (PmT4MO), and flavin‐containing monooxygenase (MaFMO). Although most indole oxygenases preferentially oxygenate the electronically active C3 position of indole, PmT4MO was newly characterized to perform C2 oxygenation of 6‐bromoindole with 45% yield to produce 6‐bromo‐2‐oxindole. In addition, 6BrIR was selectively generated without indigo and indirubin byproducts by controlling the reducing power of cysteine and oxygen supply during the MaFMO reaction. These approaches led to 34.1 mg/L 6BrIR productions, making it possible to produce the critical precursor of the anticancer drugs only from natural ingredients such as tryptophan, NaBr, and oxygen. Regulating the biosynthesis of indigo and indirubin has been continuously attempted. However, there is still no definitive way to control the production of each molecule due to the difficulties of regiospecific oxygenation and bromination at the indole ring. Here, we present an efficient 6‐bromoindirubin production strategy in Escherichia coli using an enzymatic system, that is, tryptophan 6‐halogenase SttH, toluene 4‐monooxygenase PmT4MO, and flavin‐containing monooxygenase MaFMO. Through the process, the critical precursor of indigoid drugs can be regiospecifically produced from tryptophan.
doi_str_mv 10.1002/bit.28188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2694416378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2710914232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3308-fdbd335557b0b41bda1bcbf9202158a64004022820dfe2fc4ebaa2484ce018383</originalsourceid><addsrcrecordid>eNp1kc9q3DAQxkVpoNs0h7yBIJfm4Ozoj235mC6bNrDQy_YsJFnKKtjWRrITnFMhL5Bn7JNU2e0p0NPwzfxm-JgPoXMCVwSALrUfr6ggQnxACwJNXQBt4CNaAEBVsLKhn9DnlO6zrEVVLdDLKgxpjJMZ_XCH-6kb_Z_fr3Z4nns1eoONSka1FkerMpJZ7ELEyXY2y0eL9zG002GCg8NV3tUx9MEPrY-T9gN2WeIxzvsx7HdqwLm1TmZnozc7r7AJnf-CTpzqkj37V0_Rr5v1dvWj2Pz8fru63hSGMRCFa3XLWFmWtQbNiW4V0Ua7hgIlpVAVB-BAqaDQOkud4VYrRbngxgIRTLBT9PV4N5t-mGwaZe-TsV2nBhumJGnVcE4qVr-hF-_Q-zDFIbuTtM5_JZwymqnLI2ViSClaJ_fR9yrOkoB8i0PmOOQhjswuj-yT7-z8f1B-u90eN_4Cvb2QkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710914232</pqid></control><display><type>article</type><title>Constructing multi‐enzymatic cascade reactions for selective production of 6‐bromoindirubin from tryptophan in Escherichia coli</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Jeongchan ; Kim, Joonwon ; Kim, Hyun ; Park, HyunA ; Kim, Jin Young ; Kim, Eun‐Jung ; Yang, Yung‐Hun ; Choi, Kwon‐Young ; Kim, Byung‐Gee</creator><creatorcontrib>Lee, Jeongchan ; Kim, Joonwon ; Kim, Hyun ; Park, HyunA ; Kim, Jin Young ; Kim, Eun‐Jung ; Yang, Yung‐Hun ; Choi, Kwon‐Young ; Kim, Byung‐Gee</creatorcontrib><description>6‐Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin‐derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site‐specific bromination and oxidation at the indole ring. Here, we present an efficient 6BrIR production strategy in Escherichia coli by using four enzymes, that is, tryptophan 6‐halogenase fused with flavin reductase Fre (Fre‐L3‐SttH), tryptophanase (TnaA), toluene 4‐monooxygenase (PmT4MO), and flavin‐containing monooxygenase (MaFMO). Although most indole oxygenases preferentially oxygenate the electronically active C3 position of indole, PmT4MO was newly characterized to perform C2 oxygenation of 6‐bromoindole with 45% yield to produce 6‐bromo‐2‐oxindole. In addition, 6BrIR was selectively generated without indigo and indirubin byproducts by controlling the reducing power of cysteine and oxygen supply during the MaFMO reaction. These approaches led to 34.1 mg/L 6BrIR productions, making it possible to produce the critical precursor of the anticancer drugs only from natural ingredients such as tryptophan, NaBr, and oxygen. Regulating the biosynthesis of indigo and indirubin has been continuously attempted. However, there is still no definitive way to control the production of each molecule due to the difficulties of regiospecific oxygenation and bromination at the indole ring. Here, we present an efficient 6‐bromoindirubin production strategy in Escherichia coli using an enzymatic system, that is, tryptophan 6‐halogenase SttH, toluene 4‐monooxygenase PmT4MO, and flavin‐containing monooxygenase MaFMO. Through the process, the critical precursor of indigoid drugs can be regiospecifically produced from tryptophan.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28188</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>6‐bromoindirubin ; Antineoplastic drugs ; Antitumor agents ; Bromination ; Cancer ; Cascade chemical reactions ; E coli ; Escherichia coli ; Flavin ; Flavin reductase ; halogenase ; Indigo ; indigoids ; Indoles ; Monooxygenase ; Oxidation ; Oxygen ; Oxygenation ; Precursors ; Reductases ; regiospecificity ; Snails ; Toluene ; Tryptophan ; Tryptophan 2,3-dioxygenase ; whole‐cell biotransformation</subject><ispartof>Biotechnology and bioengineering, 2022-10, Vol.119 (10), p.2938-2949</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3308-fdbd335557b0b41bda1bcbf9202158a64004022820dfe2fc4ebaa2484ce018383</citedby><cites>FETCH-LOGICAL-c3308-fdbd335557b0b41bda1bcbf9202158a64004022820dfe2fc4ebaa2484ce018383</cites><orcidid>0000-0002-9270-099X ; 0000-0001-6856-9728 ; 0000-0002-8834-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.28188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.28188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Jeongchan</creatorcontrib><creatorcontrib>Kim, Joonwon</creatorcontrib><creatorcontrib>Kim, Hyun</creatorcontrib><creatorcontrib>Park, HyunA</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Eun‐Jung</creatorcontrib><creatorcontrib>Yang, Yung‐Hun</creatorcontrib><creatorcontrib>Choi, Kwon‐Young</creatorcontrib><creatorcontrib>Kim, Byung‐Gee</creatorcontrib><title>Constructing multi‐enzymatic cascade reactions for selective production of 6‐bromoindirubin from tryptophan in Escherichia coli</title><title>Biotechnology and bioengineering</title><description>6‐Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin‐derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site‐specific bromination and oxidation at the indole ring. Here, we present an efficient 6BrIR production strategy in Escherichia coli by using four enzymes, that is, tryptophan 6‐halogenase fused with flavin reductase Fre (Fre‐L3‐SttH), tryptophanase (TnaA), toluene 4‐monooxygenase (PmT4MO), and flavin‐containing monooxygenase (MaFMO). Although most indole oxygenases preferentially oxygenate the electronically active C3 position of indole, PmT4MO was newly characterized to perform C2 oxygenation of 6‐bromoindole with 45% yield to produce 6‐bromo‐2‐oxindole. In addition, 6BrIR was selectively generated without indigo and indirubin byproducts by controlling the reducing power of cysteine and oxygen supply during the MaFMO reaction. These approaches led to 34.1 mg/L 6BrIR productions, making it possible to produce the critical precursor of the anticancer drugs only from natural ingredients such as tryptophan, NaBr, and oxygen. Regulating the biosynthesis of indigo and indirubin has been continuously attempted. However, there is still no definitive way to control the production of each molecule due to the difficulties of regiospecific oxygenation and bromination at the indole ring. Here, we present an efficient 6‐bromoindirubin production strategy in Escherichia coli using an enzymatic system, that is, tryptophan 6‐halogenase SttH, toluene 4‐monooxygenase PmT4MO, and flavin‐containing monooxygenase MaFMO. Through the process, the critical precursor of indigoid drugs can be regiospecifically produced from tryptophan.</description><subject>6‐bromoindirubin</subject><subject>Antineoplastic drugs</subject><subject>Antitumor agents</subject><subject>Bromination</subject><subject>Cancer</subject><subject>Cascade chemical reactions</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Flavin</subject><subject>Flavin reductase</subject><subject>halogenase</subject><subject>Indigo</subject><subject>indigoids</subject><subject>Indoles</subject><subject>Monooxygenase</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygenation</subject><subject>Precursors</subject><subject>Reductases</subject><subject>regiospecificity</subject><subject>Snails</subject><subject>Toluene</subject><subject>Tryptophan</subject><subject>Tryptophan 2,3-dioxygenase</subject><subject>whole‐cell biotransformation</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9q3DAQxkVpoNs0h7yBIJfm4Ozoj235mC6bNrDQy_YsJFnKKtjWRrITnFMhL5Bn7JNU2e0p0NPwzfxm-JgPoXMCVwSALrUfr6ggQnxACwJNXQBt4CNaAEBVsLKhn9DnlO6zrEVVLdDLKgxpjJMZ_XCH-6kb_Z_fr3Z4nns1eoONSka1FkerMpJZ7ELEyXY2y0eL9zG002GCg8NV3tUx9MEPrY-T9gN2WeIxzvsx7HdqwLm1TmZnozc7r7AJnf-CTpzqkj37V0_Rr5v1dvWj2Pz8fru63hSGMRCFa3XLWFmWtQbNiW4V0Ua7hgIlpVAVB-BAqaDQOkud4VYrRbngxgIRTLBT9PV4N5t-mGwaZe-TsV2nBhumJGnVcE4qVr-hF-_Q-zDFIbuTtM5_JZwymqnLI2ViSClaJ_fR9yrOkoB8i0PmOOQhjswuj-yT7-z8f1B-u90eN_4Cvb2QkA</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Lee, Jeongchan</creator><creator>Kim, Joonwon</creator><creator>Kim, Hyun</creator><creator>Park, HyunA</creator><creator>Kim, Jin Young</creator><creator>Kim, Eun‐Jung</creator><creator>Yang, Yung‐Hun</creator><creator>Choi, Kwon‐Young</creator><creator>Kim, Byung‐Gee</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9270-099X</orcidid><orcidid>https://orcid.org/0000-0001-6856-9728</orcidid><orcidid>https://orcid.org/0000-0002-8834-0901</orcidid></search><sort><creationdate>202210</creationdate><title>Constructing multi‐enzymatic cascade reactions for selective production of 6‐bromoindirubin from tryptophan in Escherichia coli</title><author>Lee, Jeongchan ; Kim, Joonwon ; Kim, Hyun ; Park, HyunA ; Kim, Jin Young ; Kim, Eun‐Jung ; Yang, Yung‐Hun ; Choi, Kwon‐Young ; Kim, Byung‐Gee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3308-fdbd335557b0b41bda1bcbf9202158a64004022820dfe2fc4ebaa2484ce018383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>6‐bromoindirubin</topic><topic>Antineoplastic drugs</topic><topic>Antitumor agents</topic><topic>Bromination</topic><topic>Cancer</topic><topic>Cascade chemical reactions</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Flavin</topic><topic>Flavin reductase</topic><topic>halogenase</topic><topic>Indigo</topic><topic>indigoids</topic><topic>Indoles</topic><topic>Monooxygenase</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygenation</topic><topic>Precursors</topic><topic>Reductases</topic><topic>regiospecificity</topic><topic>Snails</topic><topic>Toluene</topic><topic>Tryptophan</topic><topic>Tryptophan 2,3-dioxygenase</topic><topic>whole‐cell biotransformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeongchan</creatorcontrib><creatorcontrib>Kim, Joonwon</creatorcontrib><creatorcontrib>Kim, Hyun</creatorcontrib><creatorcontrib>Park, HyunA</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Eun‐Jung</creatorcontrib><creatorcontrib>Yang, Yung‐Hun</creatorcontrib><creatorcontrib>Choi, Kwon‐Young</creatorcontrib><creatorcontrib>Kim, Byung‐Gee</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jeongchan</au><au>Kim, Joonwon</au><au>Kim, Hyun</au><au>Park, HyunA</au><au>Kim, Jin Young</au><au>Kim, Eun‐Jung</au><au>Yang, Yung‐Hun</au><au>Choi, Kwon‐Young</au><au>Kim, Byung‐Gee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing multi‐enzymatic cascade reactions for selective production of 6‐bromoindirubin from tryptophan in Escherichia coli</atitle><jtitle>Biotechnology and bioengineering</jtitle><date>2022-10</date><risdate>2022</risdate><volume>119</volume><issue>10</issue><spage>2938</spage><epage>2949</epage><pages>2938-2949</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>6‐Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin‐derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site‐specific bromination and oxidation at the indole ring. Here, we present an efficient 6BrIR production strategy in Escherichia coli by using four enzymes, that is, tryptophan 6‐halogenase fused with flavin reductase Fre (Fre‐L3‐SttH), tryptophanase (TnaA), toluene 4‐monooxygenase (PmT4MO), and flavin‐containing monooxygenase (MaFMO). Although most indole oxygenases preferentially oxygenate the electronically active C3 position of indole, PmT4MO was newly characterized to perform C2 oxygenation of 6‐bromoindole with 45% yield to produce 6‐bromo‐2‐oxindole. In addition, 6BrIR was selectively generated without indigo and indirubin byproducts by controlling the reducing power of cysteine and oxygen supply during the MaFMO reaction. These approaches led to 34.1 mg/L 6BrIR productions, making it possible to produce the critical precursor of the anticancer drugs only from natural ingredients such as tryptophan, NaBr, and oxygen. Regulating the biosynthesis of indigo and indirubin has been continuously attempted. However, there is still no definitive way to control the production of each molecule due to the difficulties of regiospecific oxygenation and bromination at the indole ring. Here, we present an efficient 6‐bromoindirubin production strategy in Escherichia coli using an enzymatic system, that is, tryptophan 6‐halogenase SttH, toluene 4‐monooxygenase PmT4MO, and flavin‐containing monooxygenase MaFMO. Through the process, the critical precursor of indigoid drugs can be regiospecifically produced from tryptophan.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/bit.28188</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9270-099X</orcidid><orcidid>https://orcid.org/0000-0001-6856-9728</orcidid><orcidid>https://orcid.org/0000-0002-8834-0901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2022-10, Vol.119 (10), p.2938-2949
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2694416378
source Wiley Online Library Journals Frontfile Complete
subjects 6‐bromoindirubin
Antineoplastic drugs
Antitumor agents
Bromination
Cancer
Cascade chemical reactions
E coli
Escherichia coli
Flavin
Flavin reductase
halogenase
Indigo
indigoids
Indoles
Monooxygenase
Oxidation
Oxygen
Oxygenation
Precursors
Reductases
regiospecificity
Snails
Toluene
Tryptophan
Tryptophan 2,3-dioxygenase
whole‐cell biotransformation
title Constructing multi‐enzymatic cascade reactions for selective production of 6‐bromoindirubin from tryptophan in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20multi%E2%80%90enzymatic%20cascade%20reactions%20for%20selective%20production%20of%206%E2%80%90bromoindirubin%20from%20tryptophan%20in%20Escherichia%20coli&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Lee,%20Jeongchan&rft.date=2022-10&rft.volume=119&rft.issue=10&rft.spage=2938&rft.epage=2949&rft.pages=2938-2949&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28188&rft_dat=%3Cproquest_cross%3E2710914232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2710914232&rft_id=info:pmid/&rfr_iscdi=true