Quasi-orthogonal grids with impedance matching
An elliptic, quasi-orthogonal grid generation system is formulated based on quasi-conformal mapping for arbitrary anisotropic (long and skinny) regions. The resulting system is a generalization of the well-known elliptic grid generation system derived from conformal mapping. Coupled with the grid ge...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2001, Vol.22 (4), p.1220-1237 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1237 |
---|---|
container_issue | 4 |
container_start_page | 1220 |
container_title | SIAM journal on scientific computing |
container_volume | 22 |
creator | KHAMAYSEH, Ahmed HANSEN, Glen |
description | An elliptic, quasi-orthogonal grid generation system is formulated based on quasi-conformal mapping for arbitrary anisotropic (long and skinny) regions. The resulting system is a generalization of the well-known elliptic grid generation system derived from conformal mapping. Coupled with the grid generation system, the impedance-matching principle describes a methodology for preserving the discrete accuracy of the simulation, both internal to the domain and near internal geometric interfaces. Empirically, satisfying the impedance principle tends to minimize mesh effects on the solution results; meshes that are impedance-matched tend to reduce or eliminate spurious wave reflection and/or attenuation at internal interfaces. The resulting grid generation system is used to construct impedance-matched quasi-orthogonal grids on domains containing internal geometric constraints given an algebraic grid and a grid impedance function as initial conditions. |
doi_str_mv | 10.1137/S1064827599358613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26942232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26942232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-ec29a862b818bef7c56a0f5c72dd18dde6859899f0abebe53bfc77fd2b773a033</originalsourceid><addsrcrecordid>eNplkMtKw0AUhgdRsFYfwF0QcZc6l8xtKcUbFETU9TCZSzslydSZBPHtTWhB0NU5cL7_h_MBcIngAiHCb98QZJXAnEpJqGCIHIEZgpKWHEl-PO2sKqf7KTjLeQshYpXEM7B4HXQOZUz9Jq5jp5tinYLNxVfoN0Vod87qzrii1b3ZhG59Dk68brK7OMw5-Hi4f18-lauXx-fl3ao0hMC-dAZLLRiuBRK189xQpqGnhmNrkbDWMUGlkNJDXbvaUVJ7w7m3uOacaEjIHNzse3cpfg4u96oN2bim0Z2LQ1aYyQpjgkfw6g-4jUMa_8hKYkQIFxCOENpDJsWck_Nql0Kr07dCUE361D99Y-b6UKyz0Y1Po4eQf4MIY0k5-QEzJG5i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921337800</pqid></control><display><type>article</type><title>Quasi-orthogonal grids with impedance matching</title><source>SIAM Journals Online</source><creator>KHAMAYSEH, Ahmed ; HANSEN, Glen</creator><creatorcontrib>KHAMAYSEH, Ahmed ; HANSEN, Glen</creatorcontrib><description>An elliptic, quasi-orthogonal grid generation system is formulated based on quasi-conformal mapping for arbitrary anisotropic (long and skinny) regions. The resulting system is a generalization of the well-known elliptic grid generation system derived from conformal mapping. Coupled with the grid generation system, the impedance-matching principle describes a methodology for preserving the discrete accuracy of the simulation, both internal to the domain and near internal geometric interfaces. Empirically, satisfying the impedance principle tends to minimize mesh effects on the solution results; meshes that are impedance-matched tend to reduce or eliminate spurious wave reflection and/or attenuation at internal interfaces. The resulting grid generation system is used to construct impedance-matched quasi-orthogonal grids on domains containing internal geometric constraints given an algebraic grid and a grid impedance function as initial conditions.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827599358613</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Exact sciences and technology ; Functions of a complex variable ; Geometry ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Propagation ; Sciences and techniques of general use ; Simulation</subject><ispartof>SIAM journal on scientific computing, 2001, Vol.22 (4), p.1220-1237</ispartof><rights>2001 INIST-CNRS</rights><rights>[Copyright] © 2000 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-ec29a862b818bef7c56a0f5c72dd18dde6859899f0abebe53bfc77fd2b773a033</citedby><cites>FETCH-LOGICAL-c330t-ec29a862b818bef7c56a0f5c72dd18dde6859899f0abebe53bfc77fd2b773a033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1122957$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KHAMAYSEH, Ahmed</creatorcontrib><creatorcontrib>HANSEN, Glen</creatorcontrib><title>Quasi-orthogonal grids with impedance matching</title><title>SIAM journal on scientific computing</title><description>An elliptic, quasi-orthogonal grid generation system is formulated based on quasi-conformal mapping for arbitrary anisotropic (long and skinny) regions. The resulting system is a generalization of the well-known elliptic grid generation system derived from conformal mapping. Coupled with the grid generation system, the impedance-matching principle describes a methodology for preserving the discrete accuracy of the simulation, both internal to the domain and near internal geometric interfaces. Empirically, satisfying the impedance principle tends to minimize mesh effects on the solution results; meshes that are impedance-matched tend to reduce or eliminate spurious wave reflection and/or attenuation at internal interfaces. The resulting grid generation system is used to construct impedance-matched quasi-orthogonal grids on domains containing internal geometric constraints given an algebraic grid and a grid impedance function as initial conditions.</description><subject>Accuracy</subject><subject>Exact sciences and technology</subject><subject>Functions of a complex variable</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Propagation</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkMtKw0AUhgdRsFYfwF0QcZc6l8xtKcUbFETU9TCZSzslydSZBPHtTWhB0NU5cL7_h_MBcIngAiHCb98QZJXAnEpJqGCIHIEZgpKWHEl-PO2sKqf7KTjLeQshYpXEM7B4HXQOZUz9Jq5jp5tinYLNxVfoN0Vod87qzrii1b3ZhG59Dk68brK7OMw5-Hi4f18-lauXx-fl3ao0hMC-dAZLLRiuBRK189xQpqGnhmNrkbDWMUGlkNJDXbvaUVJ7w7m3uOacaEjIHNzse3cpfg4u96oN2bim0Z2LQ1aYyQpjgkfw6g-4jUMa_8hKYkQIFxCOENpDJsWck_Nql0Kr07dCUE361D99Y-b6UKyz0Y1Po4eQf4MIY0k5-QEzJG5i</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>KHAMAYSEH, Ahmed</creator><creator>HANSEN, Glen</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>Quasi-orthogonal grids with impedance matching</title><author>KHAMAYSEH, Ahmed ; HANSEN, Glen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-ec29a862b818bef7c56a0f5c72dd18dde6859899f0abebe53bfc77fd2b773a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Exact sciences and technology</topic><topic>Functions of a complex variable</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Propagation</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KHAMAYSEH, Ahmed</creatorcontrib><creatorcontrib>HANSEN, Glen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KHAMAYSEH, Ahmed</au><au>HANSEN, Glen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-orthogonal grids with impedance matching</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2001</date><risdate>2001</risdate><volume>22</volume><issue>4</issue><spage>1220</spage><epage>1237</epage><pages>1220-1237</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>An elliptic, quasi-orthogonal grid generation system is formulated based on quasi-conformal mapping for arbitrary anisotropic (long and skinny) regions. The resulting system is a generalization of the well-known elliptic grid generation system derived from conformal mapping. Coupled with the grid generation system, the impedance-matching principle describes a methodology for preserving the discrete accuracy of the simulation, both internal to the domain and near internal geometric interfaces. Empirically, satisfying the impedance principle tends to minimize mesh effects on the solution results; meshes that are impedance-matched tend to reduce or eliminate spurious wave reflection and/or attenuation at internal interfaces. The resulting grid generation system is used to construct impedance-matched quasi-orthogonal grids on domains containing internal geometric constraints given an algebraic grid and a grid impedance function as initial conditions.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827599358613</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2001, Vol.22 (4), p.1220-1237 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_miscellaneous_26942232 |
source | SIAM Journals Online |
subjects | Accuracy Exact sciences and technology Functions of a complex variable Geometry Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations, initial value problems and time-dependant initial-boundary value problems Propagation Sciences and techniques of general use Simulation |
title | Quasi-orthogonal grids with impedance matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-orthogonal%20grids%20with%20impedance%20matching&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=KHAMAYSEH,%20Ahmed&rft.date=2001&rft.volume=22&rft.issue=4&rft.spage=1220&rft.epage=1237&rft.pages=1220-1237&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827599358613&rft_dat=%3Cproquest_cross%3E26942232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921337800&rft_id=info:pmid/&rfr_iscdi=true |