Simple model of microsegregation during solidification of steels
A simple analytical model of microsegregation for the solidification of multicomponent steel alloys is presented. This model is based on the Clyne-Kurz model and is extended to take into account the effects of multiple components, a columnar dendrite microstructure, coarsening, and the δ/γ transform...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2001-07, Vol.32 (7), p.1755-1767 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1767 |
---|---|
container_issue | 7 |
container_start_page | 1755 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 32 |
creator | WON, Young-Mok THOMAS, Brian G |
description | A simple analytical model of microsegregation for the solidification of multicomponent steel alloys is presented. This model is based on the Clyne-Kurz model and is extended to take into account the effects of multiple components, a columnar dendrite microstructure, coarsening, and the δ/γ transformation. A new empirical equation to predict secondary dendrite arm spacing as a function of cooling rate and carbon content is presented, based on experimental data measured by several different researchers. The simple microsegregation model is applied to predict phase fractions during solidification, microsegregation of solute elements, and the solidus temperature. The predictions agree well with a range of measured data and the results of a complete finite-difference model. The solidus temperature decreases with either increasing cooling rate or increasing secondary dendrite arm spacing. However, the secondary dendrite arm spacing during solidification decreases with increasing cooling rate. These two opposite effects partly cancel each other, so the solidus temperature does not change much during solidification of a real casting. |
doi_str_mv | 10.1007/s11661-001-0152-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26941914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75496307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d5c1a237fe3c65e9bed8c495d550568c7e42566458377ff874365eac6a3e95153</originalsourceid><addsrcrecordid>eNp1kEtLxDAQgIMouK7-AG9FxVs1aV7NTVl8wYIH9RxiOlmypO2atAf_vSndgwgehhmGbx58CJ0TfEMwlreJECFIiXEOwquSHaAF4YyWRDF8mGssaclFRY_RSUpbnEFFxQLdvfl2F6Bo-wZC0bui9Tb2CTYRNmbwfVc0Y_Tdpkh98I133s7dTKYBIKRTdORMSHC2z0v08fjwvnou169PL6v7dWkpr4ey4ZaYikoH1AoO6hOa2jLFG84xF7WVwCouBOM1ldK5WjKaMWOFoaA44XSJrue9u9h_jZAG3fpkIQTTQT8mXQnFiCIsg5d_wG0_xi7_lhnBhJSTiyW6-JciVGIlGc4QmaFJSYrg9C761sRvTbCetOtZu8429aRdT-ev9otNsia4aDrr069BySf1P_nZf_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213709740</pqid></control><display><type>article</type><title>Simple model of microsegregation during solidification of steels</title><source>SpringerNature Journals</source><creator>WON, Young-Mok ; THOMAS, Brian G</creator><creatorcontrib>WON, Young-Mok ; THOMAS, Brian G</creatorcontrib><description>A simple analytical model of microsegregation for the solidification of multicomponent steel alloys is presented. This model is based on the Clyne-Kurz model and is extended to take into account the effects of multiple components, a columnar dendrite microstructure, coarsening, and the δ/γ transformation. A new empirical equation to predict secondary dendrite arm spacing as a function of cooling rate and carbon content is presented, based on experimental data measured by several different researchers. The simple microsegregation model is applied to predict phase fractions during solidification, microsegregation of solute elements, and the solidus temperature. The predictions agree well with a range of measured data and the results of a complete finite-difference model. The solidus temperature decreases with either increasing cooling rate or increasing secondary dendrite arm spacing. However, the secondary dendrite arm spacing during solidification decreases with increasing cooling rate. These two opposite effects partly cancel each other, so the solidus temperature does not change much during solidification of a real casting.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-001-0152-4</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Alloy steels ; Applied sciences ; Carbon content ; Casting ; Cooling rate ; Cross-disciplinary physics: materials science; rheology ; Dendritic structure ; Empirical equations ; Exact sciences and technology ; Finite difference method ; Materials science ; Mathematical models ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Solidus ; Steel alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2001-07, Vol.32 (7), p.1755-1767</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jul 2001</rights><rights>ASM International & TMS-The Minerals, Metals and Materials Society 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d5c1a237fe3c65e9bed8c495d550568c7e42566458377ff874365eac6a3e95153</citedby><cites>FETCH-LOGICAL-c358t-d5c1a237fe3c65e9bed8c495d550568c7e42566458377ff874365eac6a3e95153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1075019$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WON, Young-Mok</creatorcontrib><creatorcontrib>THOMAS, Brian G</creatorcontrib><title>Simple model of microsegregation during solidification of steels</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>A simple analytical model of microsegregation for the solidification of multicomponent steel alloys is presented. This model is based on the Clyne-Kurz model and is extended to take into account the effects of multiple components, a columnar dendrite microstructure, coarsening, and the δ/γ transformation. A new empirical equation to predict secondary dendrite arm spacing as a function of cooling rate and carbon content is presented, based on experimental data measured by several different researchers. The simple microsegregation model is applied to predict phase fractions during solidification, microsegregation of solute elements, and the solidus temperature. The predictions agree well with a range of measured data and the results of a complete finite-difference model. The solidus temperature decreases with either increasing cooling rate or increasing secondary dendrite arm spacing. However, the secondary dendrite arm spacing during solidification decreases with increasing cooling rate. These two opposite effects partly cancel each other, so the solidus temperature does not change much during solidification of a real casting.</description><subject>Alloy steels</subject><subject>Applied sciences</subject><subject>Carbon content</subject><subject>Casting</subject><subject>Cooling rate</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dendritic structure</subject><subject>Empirical equations</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Solidus</subject><subject>Steel alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAQgIMouK7-AG9FxVs1aV7NTVl8wYIH9RxiOlmypO2atAf_vSndgwgehhmGbx58CJ0TfEMwlreJECFIiXEOwquSHaAF4YyWRDF8mGssaclFRY_RSUpbnEFFxQLdvfl2F6Bo-wZC0bui9Tb2CTYRNmbwfVc0Y_Tdpkh98I133s7dTKYBIKRTdORMSHC2z0v08fjwvnou169PL6v7dWkpr4ey4ZaYikoH1AoO6hOa2jLFG84xF7WVwCouBOM1ldK5WjKaMWOFoaA44XSJrue9u9h_jZAG3fpkIQTTQT8mXQnFiCIsg5d_wG0_xi7_lhnBhJSTiyW6-JciVGIlGc4QmaFJSYrg9C761sRvTbCetOtZu8429aRdT-ev9otNsia4aDrr069BySf1P_nZf_g</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>WON, Young-Mok</creator><creator>THOMAS, Brian G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>PRINS</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20010701</creationdate><title>Simple model of microsegregation during solidification of steels</title><author>WON, Young-Mok ; THOMAS, Brian G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d5c1a237fe3c65e9bed8c495d550568c7e42566458377ff874365eac6a3e95153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alloy steels</topic><topic>Applied sciences</topic><topic>Carbon content</topic><topic>Casting</topic><topic>Cooling rate</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dendritic structure</topic><topic>Empirical equations</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Solidus</topic><topic>Steel alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WON, Young-Mok</creatorcontrib><creatorcontrib>THOMAS, Brian G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WON, Young-Mok</au><au>THOMAS, Brian G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple model of microsegregation during solidification of steels</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>32</volume><issue>7</issue><spage>1755</spage><epage>1767</epage><pages>1755-1767</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>A simple analytical model of microsegregation for the solidification of multicomponent steel alloys is presented. This model is based on the Clyne-Kurz model and is extended to take into account the effects of multiple components, a columnar dendrite microstructure, coarsening, and the δ/γ transformation. A new empirical equation to predict secondary dendrite arm spacing as a function of cooling rate and carbon content is presented, based on experimental data measured by several different researchers. The simple microsegregation model is applied to predict phase fractions during solidification, microsegregation of solute elements, and the solidus temperature. The predictions agree well with a range of measured data and the results of a complete finite-difference model. The solidus temperature decreases with either increasing cooling rate or increasing secondary dendrite arm spacing. However, the secondary dendrite arm spacing during solidification decreases with increasing cooling rate. These two opposite effects partly cancel each other, so the solidus temperature does not change much during solidification of a real casting.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-001-0152-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2001-07, Vol.32 (7), p.1755-1767 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_26941914 |
source | SpringerNature Journals |
subjects | Alloy steels Applied sciences Carbon content Casting Cooling rate Cross-disciplinary physics: materials science rheology Dendritic structure Empirical equations Exact sciences and technology Finite difference method Materials science Mathematical models Metals. Metallurgy Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Solidification Solidus Steel alloys |
title | Simple model of microsegregation during solidification of steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20model%20of%20microsegregation%20during%20solidification%20of%20steels&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=WON,%20Young-Mok&rft.date=2001-07-01&rft.volume=32&rft.issue=7&rft.spage=1755&rft.epage=1767&rft.pages=1755-1767&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-001-0152-4&rft_dat=%3Cproquest_cross%3E75496307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213709740&rft_id=info:pmid/&rfr_iscdi=true |