Skew detection and block classification of printed documents
Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2001-05, Vol.19 (8), p.567-579 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 579 |
---|---|
container_issue | 8 |
container_start_page | 567 |
container_title | Image and vision computing |
container_volume | 19 |
creator | Yin, P.-Y |
description | Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory. |
doi_str_mv | 10.1016/S0262-8856(00)00098-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26940459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885600000986</els_id><sourcerecordid>26940459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grAn0cPq7EeyWRBEil9Q8FA9h2xmArHbTU22iv_etBWvngZmnneYeRg7K-CqgEJcz6EUZS4lFxcAlwDQylzssUkhm9QuKrnPJn_IITuK8T1BDTTthN3MF_SVIY1kRueHTA-Ydb03i8z0OkZnndHbgbfZKrhhJMzQm_WShjGesAOr-0inv_WYvT3cv06f8tnL4_P0bpabqpJjzkkIsCjr2spatlVbWtDSgtQdcis7W6HREkssEK0UyA12Zc2bTiNQrZvqmJ3v9q6C_1hTHNXSRUN9rwfy66hK0dZQ8zaBfAea4GMMZFW6eanDtypAbVyprSu1EaEA1NaVEil3u8tR-uLTUVDROBoMoQtJjELv_tnwA9d1cfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26940459</pqid></control><display><type>article</type><title>Skew detection and block classification of printed documents</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yin, P.-Y</creator><creatorcontrib>Yin, P.-Y</creatorcontrib><description>Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/S0262-8856(00)00098-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Block classification ; Document analysis ; Hough transform ; Skew detection</subject><ispartof>Image and vision computing, 2001-05, Vol.19 (8), p.567-579</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</citedby><cites>FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0262-8856(00)00098-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yin, P.-Y</creatorcontrib><title>Skew detection and block classification of printed documents</title><title>Image and vision computing</title><description>Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.</description><subject>Block classification</subject><subject>Document analysis</subject><subject>Hough transform</subject><subject>Skew detection</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grAn0cPq7EeyWRBEil9Q8FA9h2xmArHbTU22iv_etBWvngZmnneYeRg7K-CqgEJcz6EUZS4lFxcAlwDQylzssUkhm9QuKrnPJn_IITuK8T1BDTTthN3MF_SVIY1kRueHTA-Ydb03i8z0OkZnndHbgbfZKrhhJMzQm_WShjGesAOr-0inv_WYvT3cv06f8tnL4_P0bpabqpJjzkkIsCjr2spatlVbWtDSgtQdcis7W6HREkssEK0UyA12Zc2bTiNQrZvqmJ3v9q6C_1hTHNXSRUN9rwfy66hK0dZQ8zaBfAea4GMMZFW6eanDtypAbVyprSu1EaEA1NaVEil3u8tR-uLTUVDROBoMoQtJjELv_tnwA9d1cfs</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Yin, P.-Y</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010501</creationdate><title>Skew detection and block classification of printed documents</title><author>Yin, P.-Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Block classification</topic><topic>Document analysis</topic><topic>Hough transform</topic><topic>Skew detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, P.-Y</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, P.-Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skew detection and block classification of printed documents</atitle><jtitle>Image and vision computing</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>19</volume><issue>8</issue><spage>567</spage><epage>579</epage><pages>567-579</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0262-8856(00)00098-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2001-05, Vol.19 (8), p.567-579 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_26940459 |
source | Access via ScienceDirect (Elsevier) |
subjects | Block classification Document analysis Hough transform Skew detection |
title | Skew detection and block classification of printed documents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skew%20detection%20and%20block%20classification%20of%20printed%20documents&rft.jtitle=Image%20and%20vision%20computing&rft.au=Yin,%20P.-Y&rft.date=2001-05-01&rft.volume=19&rft.issue=8&rft.spage=567&rft.epage=579&rft.pages=567-579&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/S0262-8856(00)00098-6&rft_dat=%3Cproquest_cross%3E26940459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26940459&rft_id=info:pmid/&rft_els_id=S0262885600000986&rfr_iscdi=true |