Skew detection and block classification of printed documents

Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2001-05, Vol.19 (8), p.567-579
1. Verfasser: Yin, P.-Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 8
container_start_page 567
container_title Image and vision computing
container_volume 19
creator Yin, P.-Y
description Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.
doi_str_mv 10.1016/S0262-8856(00)00098-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26940459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885600000986</els_id><sourcerecordid>26940459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grAn0cPq7EeyWRBEil9Q8FA9h2xmArHbTU22iv_etBWvngZmnneYeRg7K-CqgEJcz6EUZS4lFxcAlwDQylzssUkhm9QuKrnPJn_IITuK8T1BDTTthN3MF_SVIY1kRueHTA-Ydb03i8z0OkZnndHbgbfZKrhhJMzQm_WShjGesAOr-0inv_WYvT3cv06f8tnL4_P0bpabqpJjzkkIsCjr2spatlVbWtDSgtQdcis7W6HREkssEK0UyA12Zc2bTiNQrZvqmJ3v9q6C_1hTHNXSRUN9rwfy66hK0dZQ8zaBfAea4GMMZFW6eanDtypAbVyprSu1EaEA1NaVEil3u8tR-uLTUVDROBoMoQtJjELv_tnwA9d1cfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26940459</pqid></control><display><type>article</type><title>Skew detection and block classification of printed documents</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yin, P.-Y</creator><creatorcontrib>Yin, P.-Y</creatorcontrib><description>Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/S0262-8856(00)00098-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Block classification ; Document analysis ; Hough transform ; Skew detection</subject><ispartof>Image and vision computing, 2001-05, Vol.19 (8), p.567-579</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</citedby><cites>FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0262-8856(00)00098-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yin, P.-Y</creatorcontrib><title>Skew detection and block classification of printed documents</title><title>Image and vision computing</title><description>Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.</description><subject>Block classification</subject><subject>Document analysis</subject><subject>Hough transform</subject><subject>Skew detection</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grAn0cPq7EeyWRBEil9Q8FA9h2xmArHbTU22iv_etBWvngZmnneYeRg7K-CqgEJcz6EUZS4lFxcAlwDQylzssUkhm9QuKrnPJn_IITuK8T1BDTTthN3MF_SVIY1kRueHTA-Ydb03i8z0OkZnndHbgbfZKrhhJMzQm_WShjGesAOr-0inv_WYvT3cv06f8tnL4_P0bpabqpJjzkkIsCjr2spatlVbWtDSgtQdcis7W6HREkssEK0UyA12Zc2bTiNQrZvqmJ3v9q6C_1hTHNXSRUN9rwfy66hK0dZQ8zaBfAea4GMMZFW6eanDtypAbVyprSu1EaEA1NaVEil3u8tR-uLTUVDROBoMoQtJjELv_tnwA9d1cfs</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Yin, P.-Y</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010501</creationdate><title>Skew detection and block classification of printed documents</title><author>Yin, P.-Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-5e660fd844f8489392f0a8f08abd5f8bf3dca8d2d1ddf86d5cdb2457bad0e4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Block classification</topic><topic>Document analysis</topic><topic>Hough transform</topic><topic>Skew detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, P.-Y</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, P.-Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skew detection and block classification of printed documents</atitle><jtitle>Image and vision computing</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>19</volume><issue>8</issue><spage>567</spage><epage>579</epage><pages>567-579</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>Since the number of daily-received paper-based office documents is overwhelming, the development of document image analysis, which converts the paper-based documents into electronic forms becomes increasingly important. This paper describes a skew detection method which first smoothes the black runs and locates the black–white transitions to emphasize the text lines. Then the skew angle is determined by an improved Hough transform. For the block classification step, a rule-based classifier is presented. The classification rules are derived from the gray level entropy, block aspect ratio, and run length analysis. To evaluate the performance of the proposed methods, a test set of 100 different documents is used. The results of the experiments reveal that all of the 100 documents are successfully skew-corrected and the precision rate and the recall rate of the proposed block classifier are satisfactory.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0262-8856(00)00098-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2001-05, Vol.19 (8), p.567-579
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_26940459
source Access via ScienceDirect (Elsevier)
subjects Block classification
Document analysis
Hough transform
Skew detection
title Skew detection and block classification of printed documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skew%20detection%20and%20block%20classification%20of%20printed%20documents&rft.jtitle=Image%20and%20vision%20computing&rft.au=Yin,%20P.-Y&rft.date=2001-05-01&rft.volume=19&rft.issue=8&rft.spage=567&rft.epage=579&rft.pages=567-579&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/S0262-8856(00)00098-6&rft_dat=%3Cproquest_cross%3E26940459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26940459&rft_id=info:pmid/&rft_els_id=S0262885600000986&rfr_iscdi=true