Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model
Summary measures such as progression-free survival (PFS) and overall survival (OS) are commonly reported in literature for oncology trials, while time to progression (TTP) and post progression survival (PPS) are not usually reported. A time-variant transition hazard model was developed using an ordi...
Gespeichert in:
Veröffentlicht in: | Journal of pharmacokinetics and pharmacodynamics 2022-08, Vol.49 (4), p.455-469 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 4 |
container_start_page | 455 |
container_title | Journal of pharmacokinetics and pharmacodynamics |
container_volume | 49 |
creator | Nagase, Mario Doshi, Sameer Dutta, Sandeep Lin, Chih-Wei |
description | Summary measures such as progression-free survival (PFS) and overall survival (OS) are commonly reported in literature for oncology trials, while time to progression (TTP) and post progression survival (PPS) are not usually reported. A time-variant transition hazard model was developed using an ordinary differential equation (ODE) model to estimate TTP and PPS from summary level PFS and OS. The model was applied to published data from immune checkpoint inhibitor trials for non-small cell lung cancer (NSCLC) in a meta-analysis framework. This model-based method was able to robustly estimate TTP and PPS from summary level OS and PFS data, provided a quantitative approach for understanding the patterns of disease progression across different treatments through the time-variant disease progression rate function, and provided a summary of how different treatments affect TTP and PPS. The proposed method can be generalized to characterize and quantify multiple time-to-event endpoints jointly in oncology trials and improve our understanding of disease prognostics for different treatments. |
doi_str_mv | 10.1007/s10928-022-09816-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693781558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693781558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8542dbbb4233198213c21fc246c145a3b244c49888d27c248f3b41cec6d96e9c3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhU1IoPnpC3QlyCYbp_qzLS_DMEkKgRQmgeyELMsTDbY0oyvP0Nfpk1YeF0q6yELo3sN3D1c6WfaN4FuCcfUdCK6pyDGlOa4FKfPDSXZOiorlouL8dKrLKk_n7Ut2AbDBmJQFxefZ7yVEO6hovUO-Q6k2KHq0DX4dDMAkK9eirYf4QYQx7O1e9WgE69Zo462LaPCt6ac2OcE4DCr8Qr3Zmx49r442P-9XqFVRoYON70lBPrTWTVhru84E46JNnmY3zhsdDa-ys071YL7-vS-z1_vly-Ixf3p--LG4e8o1K2jMRcFp2zQNp4yRWlDCNCWdprzUhBeKNZRzzWshREurJIuONZxoo8u2Lk2t2WV2M_umd-5GA1EOFrTpe-WMH0HSsmaVIEUhEnr9H7rxY3Bpu4kqC0Y4JomiM6WDBwimk9tgp0-RBMspNjnHJlNs8hibPKQhNg9Bgt3ahH_Wn0z9AW4XnjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696531401</pqid></control><display><type>article</type><title>Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model</title><source>Springer Nature - Complete Springer Journals</source><creator>Nagase, Mario ; Doshi, Sameer ; Dutta, Sandeep ; Lin, Chih-Wei</creator><creatorcontrib>Nagase, Mario ; Doshi, Sameer ; Dutta, Sandeep ; Lin, Chih-Wei</creatorcontrib><description>Summary measures such as progression-free survival (PFS) and overall survival (OS) are commonly reported in literature for oncology trials, while time to progression (TTP) and post progression survival (PPS) are not usually reported. A time-variant transition hazard model was developed using an ordinary differential equation (ODE) model to estimate TTP and PPS from summary level PFS and OS. The model was applied to published data from immune checkpoint inhibitor trials for non-small cell lung cancer (NSCLC) in a meta-analysis framework. This model-based method was able to robustly estimate TTP and PPS from summary level OS and PFS data, provided a quantitative approach for understanding the patterns of disease progression across different treatments through the time-variant disease progression rate function, and provided a summary of how different treatments affect TTP and PPS. The proposed method can be generalized to characterize and quantify multiple time-to-event endpoints jointly in oncology trials and improve our understanding of disease prognostics for different treatments.</description><identifier>ISSN: 1567-567X</identifier><identifier>EISSN: 1573-8744</identifier><identifier>DOI: 10.1007/s10928-022-09816-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Immune checkpoint inhibitors ; Lung cancer ; Meta-analysis ; Non-small cell lung carcinoma ; Oncology ; Ordinary differential equations ; Original Paper ; Pharmacology/Toxicology ; Pharmacy ; Small cell lung carcinoma ; Veterinary Medicine/Veterinary Science</subject><ispartof>Journal of pharmacokinetics and pharmacodynamics, 2022-08, Vol.49 (4), p.455-469</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8542dbbb4233198213c21fc246c145a3b244c49888d27c248f3b41cec6d96e9c3</citedby><cites>FETCH-LOGICAL-c352t-8542dbbb4233198213c21fc246c145a3b244c49888d27c248f3b41cec6d96e9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10928-022-09816-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10928-022-09816-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nagase, Mario</creatorcontrib><creatorcontrib>Doshi, Sameer</creatorcontrib><creatorcontrib>Dutta, Sandeep</creatorcontrib><creatorcontrib>Lin, Chih-Wei</creatorcontrib><title>Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model</title><title>Journal of pharmacokinetics and pharmacodynamics</title><addtitle>J Pharmacokinet Pharmacodyn</addtitle><description>Summary measures such as progression-free survival (PFS) and overall survival (OS) are commonly reported in literature for oncology trials, while time to progression (TTP) and post progression survival (PPS) are not usually reported. A time-variant transition hazard model was developed using an ordinary differential equation (ODE) model to estimate TTP and PPS from summary level PFS and OS. The model was applied to published data from immune checkpoint inhibitor trials for non-small cell lung cancer (NSCLC) in a meta-analysis framework. This model-based method was able to robustly estimate TTP and PPS from summary level OS and PFS data, provided a quantitative approach for understanding the patterns of disease progression across different treatments through the time-variant disease progression rate function, and provided a summary of how different treatments affect TTP and PPS. The proposed method can be generalized to characterize and quantify multiple time-to-event endpoints jointly in oncology trials and improve our understanding of disease prognostics for different treatments.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Immune checkpoint inhibitors</subject><subject>Lung cancer</subject><subject>Meta-analysis</subject><subject>Non-small cell lung carcinoma</subject><subject>Oncology</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Small cell lung carcinoma</subject><subject>Veterinary Medicine/Veterinary Science</subject><issn>1567-567X</issn><issn>1573-8744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1q3DAUhU1IoPnpC3QlyCYbp_qzLS_DMEkKgRQmgeyELMsTDbY0oyvP0Nfpk1YeF0q6yELo3sN3D1c6WfaN4FuCcfUdCK6pyDGlOa4FKfPDSXZOiorlouL8dKrLKk_n7Ut2AbDBmJQFxefZ7yVEO6hovUO-Q6k2KHq0DX4dDMAkK9eirYf4QYQx7O1e9WgE69Zo462LaPCt6ac2OcE4DCr8Qr3Zmx49r442P-9XqFVRoYON70lBPrTWTVhru84E46JNnmY3zhsdDa-ys071YL7-vS-z1_vly-Ixf3p--LG4e8o1K2jMRcFp2zQNp4yRWlDCNCWdprzUhBeKNZRzzWshREurJIuONZxoo8u2Lk2t2WV2M_umd-5GA1EOFrTpe-WMH0HSsmaVIEUhEnr9H7rxY3Bpu4kqC0Y4JomiM6WDBwimk9tgp0-RBMspNjnHJlNs8hibPKQhNg9Bgt3ahH_Wn0z9AW4XnjA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Nagase, Mario</creator><creator>Doshi, Sameer</creator><creator>Dutta, Sandeep</creator><creator>Lin, Chih-Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20220801</creationdate><title>Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model</title><author>Nagase, Mario ; Doshi, Sameer ; Dutta, Sandeep ; Lin, Chih-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8542dbbb4233198213c21fc246c145a3b244c49888d27c248f3b41cec6d96e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Immune checkpoint inhibitors</topic><topic>Lung cancer</topic><topic>Meta-analysis</topic><topic>Non-small cell lung carcinoma</topic><topic>Oncology</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Small cell lung carcinoma</topic><topic>Veterinary Medicine/Veterinary Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagase, Mario</creatorcontrib><creatorcontrib>Doshi, Sameer</creatorcontrib><creatorcontrib>Dutta, Sandeep</creatorcontrib><creatorcontrib>Lin, Chih-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmacokinetics and pharmacodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagase, Mario</au><au>Doshi, Sameer</au><au>Dutta, Sandeep</au><au>Lin, Chih-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model</atitle><jtitle>Journal of pharmacokinetics and pharmacodynamics</jtitle><stitle>J Pharmacokinet Pharmacodyn</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>49</volume><issue>4</issue><spage>455</spage><epage>469</epage><pages>455-469</pages><issn>1567-567X</issn><eissn>1573-8744</eissn><abstract>Summary measures such as progression-free survival (PFS) and overall survival (OS) are commonly reported in literature for oncology trials, while time to progression (TTP) and post progression survival (PPS) are not usually reported. A time-variant transition hazard model was developed using an ordinary differential equation (ODE) model to estimate TTP and PPS from summary level PFS and OS. The model was applied to published data from immune checkpoint inhibitor trials for non-small cell lung cancer (NSCLC) in a meta-analysis framework. This model-based method was able to robustly estimate TTP and PPS from summary level OS and PFS data, provided a quantitative approach for understanding the patterns of disease progression across different treatments through the time-variant disease progression rate function, and provided a summary of how different treatments affect TTP and PPS. The proposed method can be generalized to characterize and quantify multiple time-to-event endpoints jointly in oncology trials and improve our understanding of disease prognostics for different treatments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10928-022-09816-w</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-567X |
ispartof | Journal of pharmacokinetics and pharmacodynamics, 2022-08, Vol.49 (4), p.455-469 |
issn | 1567-567X 1573-8744 |
language | eng |
recordid | cdi_proquest_miscellaneous_2693781558 |
source | Springer Nature - Complete Springer Journals |
subjects | Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Immune checkpoint inhibitors Lung cancer Meta-analysis Non-small cell lung carcinoma Oncology Ordinary differential equations Original Paper Pharmacology/Toxicology Pharmacy Small cell lung carcinoma Veterinary Medicine/Veterinary Science |
title | Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20time%20to%20progression%20and%20post%20progression%20survival%20using%20joint%20modeling%20of%20summary%20level%20OS%20and%20PFS%20data%20with%20an%20ordinary%20differential%20equation%20model&rft.jtitle=Journal%20of%20pharmacokinetics%20and%20pharmacodynamics&rft.au=Nagase,%20Mario&rft.date=2022-08-01&rft.volume=49&rft.issue=4&rft.spage=455&rft.epage=469&rft.pages=455-469&rft.issn=1567-567X&rft.eissn=1573-8744&rft_id=info:doi/10.1007/s10928-022-09816-w&rft_dat=%3Cproquest_cross%3E2693781558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696531401&rft_id=info:pmid/&rfr_iscdi=true |