Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect
Due to the combined effects of carbon emission and carbon sink, agriculture is acknowledged as an essential contributor to achieve the Chinese government's carbon neutrality goal of 2060, and carbon footprint (CF) and carbon footprint intensity are substantial indicators to reveal the carbon em...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2022-11, Vol.846, p.157507-157507, Article 157507 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157507 |
---|---|
container_issue | |
container_start_page | 157507 |
container_title | The Science of the total environment |
container_volume | 846 |
creator | Cui, Yu Khan, Sufyan Ullah Sauer, Johannes Zhao, Minjuan |
description | Due to the combined effects of carbon emission and carbon sink, agriculture is acknowledged as an essential contributor to achieve the Chinese government's carbon neutrality goal of 2060, and carbon footprint (CF) and carbon footprint intensity are substantial indicators to reveal the carbon emission level. For these reasons, the Theil index technique and extended STIRPAT model were employed to evaluate their spatiotemporal heterogeneity and influencing factors using panel data from 31 provinces for the period 1997–2019. The findings revealed that the CF showed an increasing trend with an annual growth rate of 24.6 %. The carbon footprint intensity (CFI) indicated an evident spatiotemporal heterogeneity and transferred over time, with an average growth rate of 19.82 %. The CFI Theil index and its contribution rate both confirmed that intra-regional difference is the main source of the overall difference, among which, the CFI Theil index displayed the distribution feature of “western (11.50 %) > central (11.12 %) > eastern (10.56 %) > northeast (6.61 %). The contribution rate of CFI illustrated the spatial pattern of “eastern (33.74 %) > central (21.07 %) > western (19.87 %) > northeast (5.24 %). Furthermore, the influencing effects of GDP per capita, planting structure, population density and urbanization level on CF and CFI also demonstrate evident spatiotemporal heterogeneity.
[Display omitted]
•Carbon sink is considered into the CF and CFI accounting system.•Theil index method and STIRPAT model are applied to conduct empirical analysis.•CF increased 24.6 % per year and demonstrates “central > northeast > eastern > western”.•CFI presented a spatiotemporal heterogeneity with an average growth rate of 19.82 %.•The influencing effect of CF and CFI indicates obvious spatiotemporal heterogeneity. |
doi_str_mv | 10.1016/j.scitotenv.2022.157507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693780314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969722046058</els_id><sourcerecordid>2693780314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-5722f4c20b6d30b4fc3bf01ca26361380203178802ccad74049c1bee35ec1adf3</originalsourceid><addsrcrecordid>eNqFkc1KxDAUhYMoOI4-g1m6aU3STtO6Exl_YMCNrkOa3owZO0lNUnHexkc1dcSNCy9cLoRzPjg5CJ1TklNCq8tNHpSJLoJ9zxlhLKcLviD8AM1ozZuMElYdohkhZZ01VcOP0UkIG5KG13SGPpcfQ--8sWscXwCHQUaTWNvBednjF4jg3RosmLjD0nbYWN2PYNVk0FJF5wN2Gsu1N2rs4zi5lPSts1g7F4dEjt_GP49pwYbEvcLLbeu63YT8UQVjXzFoDSqeoiMt-wBnP3eOnm-XTzf32erx7uHmepUpxuuYLThjulSMtFVXkLbUqmg1oUqyqqhoURNGCsrrdJWSHS9J2SjaAhQLUFR2upijiz138O5thBDF1gQFfS8tuDEIVjUFrxOkTFK-lyrvQvCgRUq0lX4nKBFTJ2IjfjsRUydi30lyXu-dkJK8G_CTLv0mdManrKJz5l_GF7eqn1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693780314</pqid></control><display><type>article</type><title>Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cui, Yu ; Khan, Sufyan Ullah ; Sauer, Johannes ; Zhao, Minjuan</creator><creatorcontrib>Cui, Yu ; Khan, Sufyan Ullah ; Sauer, Johannes ; Zhao, Minjuan</creatorcontrib><description>Due to the combined effects of carbon emission and carbon sink, agriculture is acknowledged as an essential contributor to achieve the Chinese government's carbon neutrality goal of 2060, and carbon footprint (CF) and carbon footprint intensity are substantial indicators to reveal the carbon emission level. For these reasons, the Theil index technique and extended STIRPAT model were employed to evaluate their spatiotemporal heterogeneity and influencing factors using panel data from 31 provinces for the period 1997–2019. The findings revealed that the CF showed an increasing trend with an annual growth rate of 24.6 %. The carbon footprint intensity (CFI) indicated an evident spatiotemporal heterogeneity and transferred over time, with an average growth rate of 19.82 %. The CFI Theil index and its contribution rate both confirmed that intra-regional difference is the main source of the overall difference, among which, the CFI Theil index displayed the distribution feature of “western (11.50 %) > central (11.12 %) > eastern (10.56 %) > northeast (6.61 %). The contribution rate of CFI illustrated the spatial pattern of “eastern (33.74 %) > central (21.07 %) > western (19.87 %) > northeast (5.24 %). Furthermore, the influencing effects of GDP per capita, planting structure, population density and urbanization level on CF and CFI also demonstrate evident spatiotemporal heterogeneity.
[Display omitted]
•Carbon sink is considered into the CF and CFI accounting system.•Theil index method and STIRPAT model are applied to conduct empirical analysis.•CF increased 24.6 % per year and demonstrates “central > northeast > eastern > western”.•CFI presented a spatiotemporal heterogeneity with an average growth rate of 19.82 %.•The influencing effect of CF and CFI indicates obvious spatiotemporal heterogeneity.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2022.157507</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carbon footprint ; Carbon footprint intensity ; Carbon sink ; Influencing factors ; Spatiotemporal heterogeneity</subject><ispartof>The Science of the total environment, 2022-11, Vol.846, p.157507-157507, Article 157507</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-5722f4c20b6d30b4fc3bf01ca26361380203178802ccad74049c1bee35ec1adf3</citedby><cites>FETCH-LOGICAL-c278t-5722f4c20b6d30b4fc3bf01ca26361380203178802ccad74049c1bee35ec1adf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2022.157507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Cui, Yu</creatorcontrib><creatorcontrib>Khan, Sufyan Ullah</creatorcontrib><creatorcontrib>Sauer, Johannes</creatorcontrib><creatorcontrib>Zhao, Minjuan</creatorcontrib><title>Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect</title><title>The Science of the total environment</title><description>Due to the combined effects of carbon emission and carbon sink, agriculture is acknowledged as an essential contributor to achieve the Chinese government's carbon neutrality goal of 2060, and carbon footprint (CF) and carbon footprint intensity are substantial indicators to reveal the carbon emission level. For these reasons, the Theil index technique and extended STIRPAT model were employed to evaluate their spatiotemporal heterogeneity and influencing factors using panel data from 31 provinces for the period 1997–2019. The findings revealed that the CF showed an increasing trend with an annual growth rate of 24.6 %. The carbon footprint intensity (CFI) indicated an evident spatiotemporal heterogeneity and transferred over time, with an average growth rate of 19.82 %. The CFI Theil index and its contribution rate both confirmed that intra-regional difference is the main source of the overall difference, among which, the CFI Theil index displayed the distribution feature of “western (11.50 %) > central (11.12 %) > eastern (10.56 %) > northeast (6.61 %). The contribution rate of CFI illustrated the spatial pattern of “eastern (33.74 %) > central (21.07 %) > western (19.87 %) > northeast (5.24 %). Furthermore, the influencing effects of GDP per capita, planting structure, population density and urbanization level on CF and CFI also demonstrate evident spatiotemporal heterogeneity.
[Display omitted]
•Carbon sink is considered into the CF and CFI accounting system.•Theil index method and STIRPAT model are applied to conduct empirical analysis.•CF increased 24.6 % per year and demonstrates “central > northeast > eastern > western”.•CFI presented a spatiotemporal heterogeneity with an average growth rate of 19.82 %.•The influencing effect of CF and CFI indicates obvious spatiotemporal heterogeneity.</description><subject>Carbon footprint</subject><subject>Carbon footprint intensity</subject><subject>Carbon sink</subject><subject>Influencing factors</subject><subject>Spatiotemporal heterogeneity</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KxDAUhYMoOI4-g1m6aU3STtO6Exl_YMCNrkOa3owZO0lNUnHexkc1dcSNCy9cLoRzPjg5CJ1TklNCq8tNHpSJLoJ9zxlhLKcLviD8AM1ozZuMElYdohkhZZ01VcOP0UkIG5KG13SGPpcfQ--8sWscXwCHQUaTWNvBednjF4jg3RosmLjD0nbYWN2PYNVk0FJF5wN2Gsu1N2rs4zi5lPSts1g7F4dEjt_GP49pwYbEvcLLbeu63YT8UQVjXzFoDSqeoiMt-wBnP3eOnm-XTzf32erx7uHmepUpxuuYLThjulSMtFVXkLbUqmg1oUqyqqhoURNGCsrrdJWSHS9J2SjaAhQLUFR2upijiz138O5thBDF1gQFfS8tuDEIVjUFrxOkTFK-lyrvQvCgRUq0lX4nKBFTJ2IjfjsRUydi30lyXu-dkJK8G_CTLv0mdManrKJz5l_GF7eqn1g</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Cui, Yu</creator><creator>Khan, Sufyan Ullah</creator><creator>Sauer, Johannes</creator><creator>Zhao, Minjuan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221110</creationdate><title>Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect</title><author>Cui, Yu ; Khan, Sufyan Ullah ; Sauer, Johannes ; Zhao, Minjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-5722f4c20b6d30b4fc3bf01ca26361380203178802ccad74049c1bee35ec1adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon footprint</topic><topic>Carbon footprint intensity</topic><topic>Carbon sink</topic><topic>Influencing factors</topic><topic>Spatiotemporal heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yu</creatorcontrib><creatorcontrib>Khan, Sufyan Ullah</creatorcontrib><creatorcontrib>Sauer, Johannes</creatorcontrib><creatorcontrib>Zhao, Minjuan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yu</au><au>Khan, Sufyan Ullah</au><au>Sauer, Johannes</au><au>Zhao, Minjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect</atitle><jtitle>The Science of the total environment</jtitle><date>2022-11-10</date><risdate>2022</risdate><volume>846</volume><spage>157507</spage><epage>157507</epage><pages>157507-157507</pages><artnum>157507</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Due to the combined effects of carbon emission and carbon sink, agriculture is acknowledged as an essential contributor to achieve the Chinese government's carbon neutrality goal of 2060, and carbon footprint (CF) and carbon footprint intensity are substantial indicators to reveal the carbon emission level. For these reasons, the Theil index technique and extended STIRPAT model were employed to evaluate their spatiotemporal heterogeneity and influencing factors using panel data from 31 provinces for the period 1997–2019. The findings revealed that the CF showed an increasing trend with an annual growth rate of 24.6 %. The carbon footprint intensity (CFI) indicated an evident spatiotemporal heterogeneity and transferred over time, with an average growth rate of 19.82 %. The CFI Theil index and its contribution rate both confirmed that intra-regional difference is the main source of the overall difference, among which, the CFI Theil index displayed the distribution feature of “western (11.50 %) > central (11.12 %) > eastern (10.56 %) > northeast (6.61 %). The contribution rate of CFI illustrated the spatial pattern of “eastern (33.74 %) > central (21.07 %) > western (19.87 %) > northeast (5.24 %). Furthermore, the influencing effects of GDP per capita, planting structure, population density and urbanization level on CF and CFI also demonstrate evident spatiotemporal heterogeneity.
[Display omitted]
•Carbon sink is considered into the CF and CFI accounting system.•Theil index method and STIRPAT model are applied to conduct empirical analysis.•CF increased 24.6 % per year and demonstrates “central > northeast > eastern > western”.•CFI presented a spatiotemporal heterogeneity with an average growth rate of 19.82 %.•The influencing effect of CF and CFI indicates obvious spatiotemporal heterogeneity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.scitotenv.2022.157507</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2022-11, Vol.846, p.157507-157507, Article 157507 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_2693780314 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon footprint Carbon footprint intensity Carbon sink Influencing factors Spatiotemporal heterogeneity |
title | Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20spatiotemporal%20heterogeneity%20and%20influencing%20factors%20of%20agricultural%20carbon%20footprint%20and%20carbon%20footprint%20intensity:%20Embodying%20carbon%20sink%20effect&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Cui,%20Yu&rft.date=2022-11-10&rft.volume=846&rft.spage=157507&rft.epage=157507&rft.pages=157507-157507&rft.artnum=157507&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2022.157507&rft_dat=%3Cproquest_cross%3E2693780314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693780314&rft_id=info:pmid/&rft_els_id=S0048969722046058&rfr_iscdi=true |