Noninvasive prediction models of intra-amniotic infection in women with preterm labor

Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of obstetrics and gynecology 2023-01, Vol.228 (1), p.78.e1-78.e13
Hauptverfasser: Cobo, Teresa, Burgos-Artizzu, Xavier P., Collado, M. Carmen, Andreu-Fernández, Vicente, Sanchez-Garcia, Ana B., Filella, Xavier, Marin, Silvia, Cascante, Marta, Bosch, Jordi, Ferrero, Silvia, Boada, David, Murillo, Clara, Rueda, Claudia, Ponce, Júlia, Palacio, Montse, Gratacós, Eduard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78.e13
container_issue 1
container_start_page 78.e1
container_title American journal of obstetrics and gynecology
container_volume 228
creator Cobo, Teresa
Burgos-Artizzu, Xavier P.
Collado, M. Carmen
Andreu-Fernández, Vicente
Sanchez-Garcia, Ana B.
Filella, Xavier
Marin, Silvia
Cascante, Marta
Bosch, Jordi
Ferrero, Silvia
Boada, David
Murillo, Clara
Rueda, Claudia
Ponce, Júlia
Palacio, Montse
Gratacós, Eduard
description Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying intra-amniotic infection and/or early delivery are crucial to focus early efforts on high-risk preterm labor women while avoiding unnecessary interventions in low-risk preterm labor women. This study modeled the best performing models, integrating biochemical data with clinical and ultrasound information to predict a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days. From 2015 to 2020, data from a cohort of women, who underwent amniocentesis to rule in or rule out intra-amniotic infection or inflammation, admitted with a diagnosis of preterm labor at
doi_str_mv 10.1016/j.ajog.2022.07.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693773068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002937822005816</els_id><sourcerecordid>2693773068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-3873552afda53b7857bdfbd13416a01c5c3c9c4997661ce474a678b6f7a315653</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIj15a89EkLXiRxS9Y9OKeQ5pONaVt1qS74r83ZVePXmYYeN4X5kHokuCMYCJu2ky37j2jmNIMywxTeYTmBJcyFYUojtEcY0zTkslihs5CaKeTlvQUzRiPQE7KOVq_uMEOOx3sDpKNh9qa0boh6V0NXUhck9hh9DrV_WDdaE08G9gjdki-XA9x2vFjyo7g-6TTlfPn6KTRXYCLw16g9cP92_IpXb0-Pi_vVqlhXIwpKyTjnOqm1pxVsuCyqpuqJiwnQmNiuGGmNHlZSiGIgVzmWsiiEo3UjHDB2QJd73s33n1uIYyqt8FA1-kB3DYoKuL3kmFRRJTuUeNdCB4atfG21_5bEawmnapVk0416VRYqqgzhq4O_duqh_ov8usvArd7IMqCnQWvgrEwmOjRR02qdva__h8vmobJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693773068</pqid></control><display><type>article</type><title>Noninvasive prediction models of intra-amniotic infection in women with preterm labor</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Cobo, Teresa ; Burgos-Artizzu, Xavier P. ; Collado, M. Carmen ; Andreu-Fernández, Vicente ; Sanchez-Garcia, Ana B. ; Filella, Xavier ; Marin, Silvia ; Cascante, Marta ; Bosch, Jordi ; Ferrero, Silvia ; Boada, David ; Murillo, Clara ; Rueda, Claudia ; Ponce, Júlia ; Palacio, Montse ; Gratacós, Eduard</creator><creatorcontrib>Cobo, Teresa ; Burgos-Artizzu, Xavier P. ; Collado, M. Carmen ; Andreu-Fernández, Vicente ; Sanchez-Garcia, Ana B. ; Filella, Xavier ; Marin, Silvia ; Cascante, Marta ; Bosch, Jordi ; Ferrero, Silvia ; Boada, David ; Murillo, Clara ; Rueda, Claudia ; Ponce, Júlia ; Palacio, Montse ; Gratacós, Eduard</creatorcontrib><description>Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying intra-amniotic infection and/or early delivery are crucial to focus early efforts on high-risk preterm labor women while avoiding unnecessary interventions in low-risk preterm labor women. This study modeled the best performing models, integrating biochemical data with clinical and ultrasound information to predict a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days. From 2015 to 2020, data from a cohort of women, who underwent amniocentesis to rule in or rule out intra-amniotic infection or inflammation, admitted with a diagnosis of preterm labor at &lt;34 weeks of gestation at the Hospital Clinic and Hospital Sant Joan de Déu, Barcelona, Spain, were used. At admission, transvaginal ultrasound was performed, and maternal blood and vaginal samples were collected. Using high-dimensional biology, vaginal proteins (using multiplex immunoassay), amino acids (using high-performance liquid chromatography), and bacteria (using 16S ribosomal RNA gene amplicon sequencing) were explored to predict the composite outcome. We selected ultrasound, maternal blood, and vaginal predictors that could be tested with rapid diagnostic techniques and developed prediction models employing machine learning that was applied in a validation cohort. A cohort of 288 women with preterm labor at &lt;34 weeks of gestation, of which 103 (35%) had a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days, were included in this study. The sample was divided into derivation (n=116) and validation (n=172) cohorts. Of note, 4 prediction models were proposed, including ultrasound transvaginal cervical length, maternal C-reactive protein, vaginal interleukin 6 (using an automated immunoanalyzer), vaginal pH (using a pH meter), vaginal lactic acid (using a reflectometer), and vaginal Lactobacillus genus (using quantitative polymerase chain reaction), with areas under the receiving operating characteristic curve ranging from 82.2% (95% confidence interval, ±3.1%) to 85.2% (95% confidence interval, ±3.1%), sensitivities ranging from 76.1% to 85.9%, and specificities ranging from 75.2% to 85.1%. The study results have provided proof of principle of how noninvasive methods suitable for point-of-care systems can select high-risk cases among women with preterm labor and might substantially aid in clinical management and outcomes while improving the use of resources and patient experience.</description><identifier>ISSN: 0002-9378</identifier><identifier>EISSN: 1097-6868</identifier><identifier>DOI: 10.1016/j.ajog.2022.07.027</identifier><identifier>PMID: 35868419</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>amniocentesis ; Amniocentesis - methods ; Amniotic Fluid - microbiology ; Chorioamnionitis - microbiology ; Female ; Humans ; Infant, Newborn ; Inflammation - metabolism ; intra-amniotic infection ; multivariable prediction models ; Obstetric Labor, Premature - diagnosis ; Pregnancy ; preterm labor ; spontaneous preterm delivery</subject><ispartof>American journal of obstetrics and gynecology, 2023-01, Vol.228 (1), p.78.e1-78.e13</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-3873552afda53b7857bdfbd13416a01c5c3c9c4997661ce474a678b6f7a315653</citedby><cites>FETCH-LOGICAL-c356t-3873552afda53b7857bdfbd13416a01c5c3c9c4997661ce474a678b6f7a315653</cites><orcidid>0000-0003-3130-1829 ; 0000-0002-5869-4629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajog.2022.07.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35868419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cobo, Teresa</creatorcontrib><creatorcontrib>Burgos-Artizzu, Xavier P.</creatorcontrib><creatorcontrib>Collado, M. Carmen</creatorcontrib><creatorcontrib>Andreu-Fernández, Vicente</creatorcontrib><creatorcontrib>Sanchez-Garcia, Ana B.</creatorcontrib><creatorcontrib>Filella, Xavier</creatorcontrib><creatorcontrib>Marin, Silvia</creatorcontrib><creatorcontrib>Cascante, Marta</creatorcontrib><creatorcontrib>Bosch, Jordi</creatorcontrib><creatorcontrib>Ferrero, Silvia</creatorcontrib><creatorcontrib>Boada, David</creatorcontrib><creatorcontrib>Murillo, Clara</creatorcontrib><creatorcontrib>Rueda, Claudia</creatorcontrib><creatorcontrib>Ponce, Júlia</creatorcontrib><creatorcontrib>Palacio, Montse</creatorcontrib><creatorcontrib>Gratacós, Eduard</creatorcontrib><title>Noninvasive prediction models of intra-amniotic infection in women with preterm labor</title><title>American journal of obstetrics and gynecology</title><addtitle>Am J Obstet Gynecol</addtitle><description>Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying intra-amniotic infection and/or early delivery are crucial to focus early efforts on high-risk preterm labor women while avoiding unnecessary interventions in low-risk preterm labor women. This study modeled the best performing models, integrating biochemical data with clinical and ultrasound information to predict a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days. From 2015 to 2020, data from a cohort of women, who underwent amniocentesis to rule in or rule out intra-amniotic infection or inflammation, admitted with a diagnosis of preterm labor at &lt;34 weeks of gestation at the Hospital Clinic and Hospital Sant Joan de Déu, Barcelona, Spain, were used. At admission, transvaginal ultrasound was performed, and maternal blood and vaginal samples were collected. Using high-dimensional biology, vaginal proteins (using multiplex immunoassay), amino acids (using high-performance liquid chromatography), and bacteria (using 16S ribosomal RNA gene amplicon sequencing) were explored to predict the composite outcome. We selected ultrasound, maternal blood, and vaginal predictors that could be tested with rapid diagnostic techniques and developed prediction models employing machine learning that was applied in a validation cohort. A cohort of 288 women with preterm labor at &lt;34 weeks of gestation, of which 103 (35%) had a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days, were included in this study. The sample was divided into derivation (n=116) and validation (n=172) cohorts. Of note, 4 prediction models were proposed, including ultrasound transvaginal cervical length, maternal C-reactive protein, vaginal interleukin 6 (using an automated immunoanalyzer), vaginal pH (using a pH meter), vaginal lactic acid (using a reflectometer), and vaginal Lactobacillus genus (using quantitative polymerase chain reaction), with areas under the receiving operating characteristic curve ranging from 82.2% (95% confidence interval, ±3.1%) to 85.2% (95% confidence interval, ±3.1%), sensitivities ranging from 76.1% to 85.9%, and specificities ranging from 75.2% to 85.1%. The study results have provided proof of principle of how noninvasive methods suitable for point-of-care systems can select high-risk cases among women with preterm labor and might substantially aid in clinical management and outcomes while improving the use of resources and patient experience.</description><subject>amniocentesis</subject><subject>Amniocentesis - methods</subject><subject>Amniotic Fluid - microbiology</subject><subject>Chorioamnionitis - microbiology</subject><subject>Female</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Inflammation - metabolism</subject><subject>intra-amniotic infection</subject><subject>multivariable prediction models</subject><subject>Obstetric Labor, Premature - diagnosis</subject><subject>Pregnancy</subject><subject>preterm labor</subject><subject>spontaneous preterm delivery</subject><issn>0002-9378</issn><issn>1097-6868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIj15a89EkLXiRxS9Y9OKeQ5pONaVt1qS74r83ZVePXmYYeN4X5kHokuCMYCJu2ky37j2jmNIMywxTeYTmBJcyFYUojtEcY0zTkslihs5CaKeTlvQUzRiPQE7KOVq_uMEOOx3sDpKNh9qa0boh6V0NXUhck9hh9DrV_WDdaE08G9gjdki-XA9x2vFjyo7g-6TTlfPn6KTRXYCLw16g9cP92_IpXb0-Pi_vVqlhXIwpKyTjnOqm1pxVsuCyqpuqJiwnQmNiuGGmNHlZSiGIgVzmWsiiEo3UjHDB2QJd73s33n1uIYyqt8FA1-kB3DYoKuL3kmFRRJTuUeNdCB4atfG21_5bEawmnapVk0416VRYqqgzhq4O_duqh_ov8usvArd7IMqCnQWvgrEwmOjRR02qdva__h8vmobJ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Cobo, Teresa</creator><creator>Burgos-Artizzu, Xavier P.</creator><creator>Collado, M. Carmen</creator><creator>Andreu-Fernández, Vicente</creator><creator>Sanchez-Garcia, Ana B.</creator><creator>Filella, Xavier</creator><creator>Marin, Silvia</creator><creator>Cascante, Marta</creator><creator>Bosch, Jordi</creator><creator>Ferrero, Silvia</creator><creator>Boada, David</creator><creator>Murillo, Clara</creator><creator>Rueda, Claudia</creator><creator>Ponce, Júlia</creator><creator>Palacio, Montse</creator><creator>Gratacós, Eduard</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3130-1829</orcidid><orcidid>https://orcid.org/0000-0002-5869-4629</orcidid></search><sort><creationdate>202301</creationdate><title>Noninvasive prediction models of intra-amniotic infection in women with preterm labor</title><author>Cobo, Teresa ; Burgos-Artizzu, Xavier P. ; Collado, M. Carmen ; Andreu-Fernández, Vicente ; Sanchez-Garcia, Ana B. ; Filella, Xavier ; Marin, Silvia ; Cascante, Marta ; Bosch, Jordi ; Ferrero, Silvia ; Boada, David ; Murillo, Clara ; Rueda, Claudia ; Ponce, Júlia ; Palacio, Montse ; Gratacós, Eduard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-3873552afda53b7857bdfbd13416a01c5c3c9c4997661ce474a678b6f7a315653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amniocentesis</topic><topic>Amniocentesis - methods</topic><topic>Amniotic Fluid - microbiology</topic><topic>Chorioamnionitis - microbiology</topic><topic>Female</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Inflammation - metabolism</topic><topic>intra-amniotic infection</topic><topic>multivariable prediction models</topic><topic>Obstetric Labor, Premature - diagnosis</topic><topic>Pregnancy</topic><topic>preterm labor</topic><topic>spontaneous preterm delivery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobo, Teresa</creatorcontrib><creatorcontrib>Burgos-Artizzu, Xavier P.</creatorcontrib><creatorcontrib>Collado, M. Carmen</creatorcontrib><creatorcontrib>Andreu-Fernández, Vicente</creatorcontrib><creatorcontrib>Sanchez-Garcia, Ana B.</creatorcontrib><creatorcontrib>Filella, Xavier</creatorcontrib><creatorcontrib>Marin, Silvia</creatorcontrib><creatorcontrib>Cascante, Marta</creatorcontrib><creatorcontrib>Bosch, Jordi</creatorcontrib><creatorcontrib>Ferrero, Silvia</creatorcontrib><creatorcontrib>Boada, David</creatorcontrib><creatorcontrib>Murillo, Clara</creatorcontrib><creatorcontrib>Rueda, Claudia</creatorcontrib><creatorcontrib>Ponce, Júlia</creatorcontrib><creatorcontrib>Palacio, Montse</creatorcontrib><creatorcontrib>Gratacós, Eduard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of obstetrics and gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobo, Teresa</au><au>Burgos-Artizzu, Xavier P.</au><au>Collado, M. Carmen</au><au>Andreu-Fernández, Vicente</au><au>Sanchez-Garcia, Ana B.</au><au>Filella, Xavier</au><au>Marin, Silvia</au><au>Cascante, Marta</au><au>Bosch, Jordi</au><au>Ferrero, Silvia</au><au>Boada, David</au><au>Murillo, Clara</au><au>Rueda, Claudia</au><au>Ponce, Júlia</au><au>Palacio, Montse</au><au>Gratacós, Eduard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive prediction models of intra-amniotic infection in women with preterm labor</atitle><jtitle>American journal of obstetrics and gynecology</jtitle><addtitle>Am J Obstet Gynecol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>228</volume><issue>1</issue><spage>78.e1</spage><epage>78.e13</epage><pages>78.e1-78.e13</pages><issn>0002-9378</issn><eissn>1097-6868</eissn><abstract>Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying intra-amniotic infection and/or early delivery are crucial to focus early efforts on high-risk preterm labor women while avoiding unnecessary interventions in low-risk preterm labor women. This study modeled the best performing models, integrating biochemical data with clinical and ultrasound information to predict a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days. From 2015 to 2020, data from a cohort of women, who underwent amniocentesis to rule in or rule out intra-amniotic infection or inflammation, admitted with a diagnosis of preterm labor at &lt;34 weeks of gestation at the Hospital Clinic and Hospital Sant Joan de Déu, Barcelona, Spain, were used. At admission, transvaginal ultrasound was performed, and maternal blood and vaginal samples were collected. Using high-dimensional biology, vaginal proteins (using multiplex immunoassay), amino acids (using high-performance liquid chromatography), and bacteria (using 16S ribosomal RNA gene amplicon sequencing) were explored to predict the composite outcome. We selected ultrasound, maternal blood, and vaginal predictors that could be tested with rapid diagnostic techniques and developed prediction models employing machine learning that was applied in a validation cohort. A cohort of 288 women with preterm labor at &lt;34 weeks of gestation, of which 103 (35%) had a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days, were included in this study. The sample was divided into derivation (n=116) and validation (n=172) cohorts. Of note, 4 prediction models were proposed, including ultrasound transvaginal cervical length, maternal C-reactive protein, vaginal interleukin 6 (using an automated immunoanalyzer), vaginal pH (using a pH meter), vaginal lactic acid (using a reflectometer), and vaginal Lactobacillus genus (using quantitative polymerase chain reaction), with areas under the receiving operating characteristic curve ranging from 82.2% (95% confidence interval, ±3.1%) to 85.2% (95% confidence interval, ±3.1%), sensitivities ranging from 76.1% to 85.9%, and specificities ranging from 75.2% to 85.1%. The study results have provided proof of principle of how noninvasive methods suitable for point-of-care systems can select high-risk cases among women with preterm labor and might substantially aid in clinical management and outcomes while improving the use of resources and patient experience.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35868419</pmid><doi>10.1016/j.ajog.2022.07.027</doi><orcidid>https://orcid.org/0000-0003-3130-1829</orcidid><orcidid>https://orcid.org/0000-0002-5869-4629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9378
ispartof American journal of obstetrics and gynecology, 2023-01, Vol.228 (1), p.78.e1-78.e13
issn 0002-9378
1097-6868
language eng
recordid cdi_proquest_miscellaneous_2693773068
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects amniocentesis
Amniocentesis - methods
Amniotic Fluid - microbiology
Chorioamnionitis - microbiology
Female
Humans
Infant, Newborn
Inflammation - metabolism
intra-amniotic infection
multivariable prediction models
Obstetric Labor, Premature - diagnosis
Pregnancy
preterm labor
spontaneous preterm delivery
title Noninvasive prediction models of intra-amniotic infection in women with preterm labor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20prediction%20models%20of%20intra-amniotic%20infection%20in%20women%20with%20preterm%20labor&rft.jtitle=American%20journal%20of%20obstetrics%20and%20gynecology&rft.au=Cobo,%20Teresa&rft.date=2023-01&rft.volume=228&rft.issue=1&rft.spage=78.e1&rft.epage=78.e13&rft.pages=78.e1-78.e13&rft.issn=0002-9378&rft.eissn=1097-6868&rft_id=info:doi/10.1016/j.ajog.2022.07.027&rft_dat=%3Cproquest_cross%3E2693773068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693773068&rft_id=info:pmid/35868419&rft_els_id=S0002937822005816&rfr_iscdi=true