Fuzzy model-based predictive control using Takagi–Sugeno models

Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of approximate reasoning 1999, Vol.22 (1), p.3-30
Hauptverfasser: Roubos, J.A., Mollov, S., Babuška, R., Verbruggen, H.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 3
container_title International journal of approximate reasoning
container_volume 22
creator Roubos, J.A.
Mollov, S.
Babuška, R.
Verbruggen, H.B.
description Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.
doi_str_mv 10.1016/S0888-613X(99)00020-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26931827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X99000201</els_id><sourcerecordid>26931827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-504e374c36b077037d6c523db6613e2acee4f644a02ba74d4f91a2dd28b3b77e3</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWKufIMxKdDGaTNIks5JSrAoFF63gLmSSNyU6ndRkptCu_Af_0C9x6ohbV29z7uW-g9A5wdcEE34zx1LKlBP6cpnnVxjjDKfkAA2IFDRlgpJDNPhDjtFJjK8dxAWTAzSetrvdNll5C1Va6Ag2WQewzjRuA4nxdRN8lbTR1ctkod_00n19fM7bJdS-D8VTdFTqKsLZ7x2i5-ndYvKQzp7uHyfjWWoolU06wgyoYIbyAguBqbDcjDJqC96tgkwbAFZyxjTOCi2YZWVOdGZtJgtaCAF0iC763nXw7y3ERq1cNFBVugbfRpXxnBKZiQ4c9aAJPsYApVoHt9JhqwhWe2HqR5ja21B5rn6EKdLlbvtc9xRsHAQVjYPadDYCmEZZ7_5p-AYcbHQf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26931827</pqid></control><display><type>article</type><title>Fuzzy model-based predictive control using Takagi–Sugeno models</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Roubos, J.A. ; Mollov, S. ; Babuška, R. ; Verbruggen, H.B.</creator><creatorcontrib>Roubos, J.A. ; Mollov, S. ; Babuška, R. ; Verbruggen, H.B.</creatorcontrib><description>Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/S0888-613X(99)00020-1</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>MIMO systems ; Model-based predictive control (MBPC) ; Nonlinear control ; Takagi–Sugeno fuzzy model</subject><ispartof>International journal of approximate reasoning, 1999, Vol.22 (1), p.3-30</ispartof><rights>1999 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-504e374c36b077037d6c523db6613e2acee4f644a02ba74d4f91a2dd28b3b77e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0888-613X(99)00020-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Roubos, J.A.</creatorcontrib><creatorcontrib>Mollov, S.</creatorcontrib><creatorcontrib>Babuška, R.</creatorcontrib><creatorcontrib>Verbruggen, H.B.</creatorcontrib><title>Fuzzy model-based predictive control using Takagi–Sugeno models</title><title>International journal of approximate reasoning</title><description>Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.</description><subject>MIMO systems</subject><subject>Model-based predictive control (MBPC)</subject><subject>Nonlinear control</subject><subject>Takagi–Sugeno fuzzy model</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWKufIMxKdDGaTNIks5JSrAoFF63gLmSSNyU6ndRkptCu_Af_0C9x6ohbV29z7uW-g9A5wdcEE34zx1LKlBP6cpnnVxjjDKfkAA2IFDRlgpJDNPhDjtFJjK8dxAWTAzSetrvdNll5C1Va6Ag2WQewzjRuA4nxdRN8lbTR1ctkod_00n19fM7bJdS-D8VTdFTqKsLZ7x2i5-ndYvKQzp7uHyfjWWoolU06wgyoYIbyAguBqbDcjDJqC96tgkwbAFZyxjTOCi2YZWVOdGZtJgtaCAF0iC763nXw7y3ERq1cNFBVugbfRpXxnBKZiQ4c9aAJPsYApVoHt9JhqwhWe2HqR5ja21B5rn6EKdLlbvtc9xRsHAQVjYPadDYCmEZZ7_5p-AYcbHQf</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Roubos, J.A.</creator><creator>Mollov, S.</creator><creator>Babuška, R.</creator><creator>Verbruggen, H.B.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Fuzzy model-based predictive control using Takagi–Sugeno models</title><author>Roubos, J.A. ; Mollov, S. ; Babuška, R. ; Verbruggen, H.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-504e374c36b077037d6c523db6613e2acee4f644a02ba74d4f91a2dd28b3b77e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>MIMO systems</topic><topic>Model-based predictive control (MBPC)</topic><topic>Nonlinear control</topic><topic>Takagi–Sugeno fuzzy model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roubos, J.A.</creatorcontrib><creatorcontrib>Mollov, S.</creatorcontrib><creatorcontrib>Babuška, R.</creatorcontrib><creatorcontrib>Verbruggen, H.B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roubos, J.A.</au><au>Mollov, S.</au><au>Babuška, R.</au><au>Verbruggen, H.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy model-based predictive control using Takagi–Sugeno models</atitle><jtitle>International journal of approximate reasoning</jtitle><date>1999</date><risdate>1999</risdate><volume>22</volume><issue>1</issue><spage>3</spage><epage>30</epage><pages>3-30</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0888-613X(99)00020-1</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-613X
ispartof International journal of approximate reasoning, 1999, Vol.22 (1), p.3-30
issn 0888-613X
1873-4731
language eng
recordid cdi_proquest_miscellaneous_26931827
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects MIMO systems
Model-based predictive control (MBPC)
Nonlinear control
Takagi–Sugeno fuzzy model
title Fuzzy model-based predictive control using Takagi–Sugeno models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20model-based%20predictive%20control%20using%20Takagi%E2%80%93Sugeno%20models&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Roubos,%20J.A.&rft.date=1999&rft.volume=22&rft.issue=1&rft.spage=3&rft.epage=30&rft.pages=3-30&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/S0888-613X(99)00020-1&rft_dat=%3Cproquest_cross%3E26931827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26931827&rft_id=info:pmid/&rft_els_id=S0888613X99000201&rfr_iscdi=true