Fuzzy model-based predictive control using Takagi–Sugeno models
Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recen...
Gespeichert in:
Veröffentlicht in: | International journal of approximate reasoning 1999, Vol.22 (1), p.3-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | International journal of approximate reasoning |
container_volume | 22 |
creator | Roubos, J.A. Mollov, S. Babuška, R. Verbruggen, H.B. |
description | Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs. |
doi_str_mv | 10.1016/S0888-613X(99)00020-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26931827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X99000201</els_id><sourcerecordid>26931827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-504e374c36b077037d6c523db6613e2acee4f644a02ba74d4f91a2dd28b3b77e3</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWKufIMxKdDGaTNIks5JSrAoFF63gLmSSNyU6ndRkptCu_Af_0C9x6ohbV29z7uW-g9A5wdcEE34zx1LKlBP6cpnnVxjjDKfkAA2IFDRlgpJDNPhDjtFJjK8dxAWTAzSetrvdNll5C1Va6Ag2WQewzjRuA4nxdRN8lbTR1ctkod_00n19fM7bJdS-D8VTdFTqKsLZ7x2i5-ndYvKQzp7uHyfjWWoolU06wgyoYIbyAguBqbDcjDJqC96tgkwbAFZyxjTOCi2YZWVOdGZtJgtaCAF0iC763nXw7y3ERq1cNFBVugbfRpXxnBKZiQ4c9aAJPsYApVoHt9JhqwhWe2HqR5ja21B5rn6EKdLlbvtc9xRsHAQVjYPadDYCmEZZ7_5p-AYcbHQf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26931827</pqid></control><display><type>article</type><title>Fuzzy model-based predictive control using Takagi–Sugeno models</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Roubos, J.A. ; Mollov, S. ; Babuška, R. ; Verbruggen, H.B.</creator><creatorcontrib>Roubos, J.A. ; Mollov, S. ; Babuška, R. ; Verbruggen, H.B.</creatorcontrib><description>Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/S0888-613X(99)00020-1</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>MIMO systems ; Model-based predictive control (MBPC) ; Nonlinear control ; Takagi–Sugeno fuzzy model</subject><ispartof>International journal of approximate reasoning, 1999, Vol.22 (1), p.3-30</ispartof><rights>1999 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-504e374c36b077037d6c523db6613e2acee4f644a02ba74d4f91a2dd28b3b77e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0888-613X(99)00020-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Roubos, J.A.</creatorcontrib><creatorcontrib>Mollov, S.</creatorcontrib><creatorcontrib>Babuška, R.</creatorcontrib><creatorcontrib>Verbruggen, H.B.</creatorcontrib><title>Fuzzy model-based predictive control using Takagi–Sugeno models</title><title>International journal of approximate reasoning</title><description>Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.</description><subject>MIMO systems</subject><subject>Model-based predictive control (MBPC)</subject><subject>Nonlinear control</subject><subject>Takagi–Sugeno fuzzy model</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWKufIMxKdDGaTNIks5JSrAoFF63gLmSSNyU6ndRkptCu_Af_0C9x6ohbV29z7uW-g9A5wdcEE34zx1LKlBP6cpnnVxjjDKfkAA2IFDRlgpJDNPhDjtFJjK8dxAWTAzSetrvdNll5C1Va6Ag2WQewzjRuA4nxdRN8lbTR1ctkod_00n19fM7bJdS-D8VTdFTqKsLZ7x2i5-ndYvKQzp7uHyfjWWoolU06wgyoYIbyAguBqbDcjDJqC96tgkwbAFZyxjTOCi2YZWVOdGZtJgtaCAF0iC763nXw7y3ERq1cNFBVugbfRpXxnBKZiQ4c9aAJPsYApVoHt9JhqwhWe2HqR5ja21B5rn6EKdLlbvtc9xRsHAQVjYPadDYCmEZZ7_5p-AYcbHQf</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Roubos, J.A.</creator><creator>Mollov, S.</creator><creator>Babuška, R.</creator><creator>Verbruggen, H.B.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Fuzzy model-based predictive control using Takagi–Sugeno models</title><author>Roubos, J.A. ; Mollov, S. ; Babuška, R. ; Verbruggen, H.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-504e374c36b077037d6c523db6613e2acee4f644a02ba74d4f91a2dd28b3b77e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>MIMO systems</topic><topic>Model-based predictive control (MBPC)</topic><topic>Nonlinear control</topic><topic>Takagi–Sugeno fuzzy model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roubos, J.A.</creatorcontrib><creatorcontrib>Mollov, S.</creatorcontrib><creatorcontrib>Babuška, R.</creatorcontrib><creatorcontrib>Verbruggen, H.B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roubos, J.A.</au><au>Mollov, S.</au><au>Babuška, R.</au><au>Verbruggen, H.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy model-based predictive control using Takagi–Sugeno models</atitle><jtitle>International journal of approximate reasoning</jtitle><date>1999</date><risdate>1999</risdate><volume>22</volume><issue>1</issue><spage>3</spage><epage>30</epage><pages>3-30</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>Nonlinear model-based predictive control (MBPC) in multi-input multi-output (MIMO) process control is attractive for industry. However, two main problems need to be considered: (i) obtaining a good nonlinear model of the process, and (ii) applying the model for control purposes. In this paper, recent work focusing on the use of Takagi–Sugeno fuzzy models in combination with MBPC is described. First, the fuzzy model-identification of MIMO processes is given. The process model is derived from input–output data by means of product-space fuzzy clustering. The MIMO model is represented as a set of coupled multi-input, single-output (MISO) models. Next, the Takagi–Sugeno fuzzy model is used in combination with MBPC. The critical element in nonlinear MBPC is the optimization routine which is nonconvex and thus difficult to solve. Two methods to deal with this problem are developed: (i) a branch-and-bound method with iterative grid-size reduction, and (ii) control based on a local linear model. Both methods have been tested and evaluated with a simulated laboratory setup for a MIMO liquid level process with two inputs and four outputs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0888-613X(99)00020-1</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-613X |
ispartof | International journal of approximate reasoning, 1999, Vol.22 (1), p.3-30 |
issn | 0888-613X 1873-4731 |
language | eng |
recordid | cdi_proquest_miscellaneous_26931827 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | MIMO systems Model-based predictive control (MBPC) Nonlinear control Takagi–Sugeno fuzzy model |
title | Fuzzy model-based predictive control using Takagi–Sugeno models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20model-based%20predictive%20control%20using%20Takagi%E2%80%93Sugeno%20models&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Roubos,%20J.A.&rft.date=1999&rft.volume=22&rft.issue=1&rft.spage=3&rft.epage=30&rft.pages=3-30&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/S0888-613X(99)00020-1&rft_dat=%3Cproquest_cross%3E26931827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26931827&rft_id=info:pmid/&rft_els_id=S0888613X99000201&rfr_iscdi=true |