Control of crystal nucleation by patterned self-assembled monolayers

An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization 1 , 2 , 3 , 4 . In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1999-04, Vol.398 (6727), p.495-498
Hauptverfasser: Aizenberg, Joanna, Black, Andrew J., Whitesides, George M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 6727
container_start_page 495
container_title Nature (London)
container_volume 398
creator Aizenberg, Joanna
Black, Andrew J.
Whitesides, George M.
description An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization 1 , 2 , 3 , 4 . In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers 17 , 18 , which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity—in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.
doi_str_mv 10.1038/19047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26928814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>40558172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-1c3c8220eec4b389f9ea15657a00119fc8261915aa528e26a3e2cae429ca4bb3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPsP1QIuBWSNG2SIxqf0iQuu1ducFGnNBlxd9i_p2OTJjhxsiw_emy_jM0EvxO8MPfCcqVP2EQoXeWqMvqUTTiXJuemqM7ZBdGKc14KrSbscR7DkKLPYpu5tKUBfBY2ziMMXQxZs83WMAyYAn5khL7NgQj7xo9tH0P0sMVEl-ysBU84O9QpWz4_Leev-eL95W3-sMhBlXrIhSuckZIjOtUUxrYWQZRVqYFzIWw7DithRQlQSoOyggKlA1TSOlBNU0zZ7V67TvFrgzTUfUcOvYeAcUO1rKw0Rqh_gMYqy_UIXv0BV3GTwvhDLblSppTajNDNHnIpEiVs63XqekjbWvB6F3j9E_jIXR9kQA58myC4jo6w1jvn8TgaJ-ET03Hnb983SyCKTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204485278</pqid></control><display><type>article</type><title>Control of crystal nucleation by patterned self-assembled monolayers</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Aizenberg, Joanna ; Black, Andrew J. ; Whitesides, George M.</creator><creatorcontrib>Aizenberg, Joanna ; Black, Andrew J. ; Whitesides, George M.</creatorcontrib><description>An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization 1 , 2 , 3 , 4 . In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers 17 , 18 , which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity—in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/19047</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Chemistry ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Crystallography ; Crystals ; Exact sciences and technology ; Fabrication ; Growth from solutions ; Humanities and Social Sciences ; letter ; Materials science ; Methods of crystal growth; physics of crystal growth ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1999-04, Vol.398 (6727), p.495-498</ispartof><rights>Macmillan Magazines Ltd. 1999</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Apr 8, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-1c3c8220eec4b389f9ea15657a00119fc8261915aa528e26a3e2cae429ca4bb3</citedby><cites>FETCH-LOGICAL-a457t-1c3c8220eec4b389f9ea15657a00119fc8261915aa528e26a3e2cae429ca4bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/19047$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/19047$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1772044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aizenberg, Joanna</creatorcontrib><creatorcontrib>Black, Andrew J.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><title>Control of crystal nucleation by patterned self-assembled monolayers</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization 1 , 2 , 3 , 4 . In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers 17 , 18 , which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity—in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.</description><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Growth from solutions</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1PwzAMhiMEEmPsP1QIuBWSNG2SIxqf0iQuu1ducFGnNBlxd9i_p2OTJjhxsiw_emy_jM0EvxO8MPfCcqVP2EQoXeWqMvqUTTiXJuemqM7ZBdGKc14KrSbscR7DkKLPYpu5tKUBfBY2ziMMXQxZs83WMAyYAn5khL7NgQj7xo9tH0P0sMVEl-ysBU84O9QpWz4_Leev-eL95W3-sMhBlXrIhSuckZIjOtUUxrYWQZRVqYFzIWw7DithRQlQSoOyggKlA1TSOlBNU0zZ7V67TvFrgzTUfUcOvYeAcUO1rKw0Rqh_gMYqy_UIXv0BV3GTwvhDLblSppTajNDNHnIpEiVs63XqekjbWvB6F3j9E_jIXR9kQA58myC4jo6w1jvn8TgaJ-ET03Hnb983SyCKTg</recordid><startdate>19990408</startdate><enddate>19990408</enddate><creator>Aizenberg, Joanna</creator><creator>Black, Andrew J.</creator><creator>Whitesides, George M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>19990408</creationdate><title>Control of crystal nucleation by patterned self-assembled monolayers</title><author>Aizenberg, Joanna ; Black, Andrew J. ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-1c3c8220eec4b389f9ea15657a00119fc8261915aa528e26a3e2cae429ca4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Growth from solutions</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aizenberg, Joanna</creatorcontrib><creatorcontrib>Black, Andrew J.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aizenberg, Joanna</au><au>Black, Andrew J.</au><au>Whitesides, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of crystal nucleation by patterned self-assembled monolayers</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1999-04-08</date><risdate>1999</risdate><volume>398</volume><issue>6727</issue><spage>495</spage><epage>498</epage><pages>495-498</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization 1 , 2 , 3 , 4 . In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers 17 , 18 , which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity—in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/19047</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1999-04, Vol.398 (6727), p.495-498
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_26928814
source SpringerLink Journals; Nature Journals Online
subjects Chemistry
Cross-disciplinary physics: materials science
rheology
Crystallization
Crystallography
Crystals
Exact sciences and technology
Fabrication
Growth from solutions
Humanities and Social Sciences
letter
Materials science
Methods of crystal growth
physics of crystal growth
multidisciplinary
Physics
Science
Science (multidisciplinary)
title Control of crystal nucleation by patterned self-assembled monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20crystal%20nucleation%20by%20patterned%20self-assembled%20monolayers&rft.jtitle=Nature%20(London)&rft.au=Aizenberg,%20Joanna&rft.date=1999-04-08&rft.volume=398&rft.issue=6727&rft.spage=495&rft.epage=498&rft.pages=495-498&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/19047&rft_dat=%3Cproquest_cross%3E40558172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204485278&rft_id=info:pmid/&rfr_iscdi=true