Efficient algorithmic learning of the structure of permutation groups by examples

This paper discusses learning algorithms for ascertaining membership, inclusion, and equality in permutation groups. The main results are randomized learning algorithms which take a random generator set of a fixed group G ≤ S n as input. We discuss randomized algorithms for learning the concepts of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 1999, Vol.37 (10), p.105-132
Hauptverfasser: Azhar, S., Reif, J.H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 10
container_start_page 105
container_title Computers & mathematics with applications (1987)
container_volume 37
creator Azhar, S.
Reif, J.H.
description This paper discusses learning algorithms for ascertaining membership, inclusion, and equality in permutation groups. The main results are randomized learning algorithms which take a random generator set of a fixed group G ≤ S n as input. We discuss randomized algorithms for learning the concepts of group membership, inclusion, and equality by representing the group in terms of its strong sequence of generators using random examples from G. We present O( n 3 log n) time sequential learning algorithms for testing membership, inclusion and equality. The running time is expressed as a function of the size of the object set. ( G ≤ S n can have as many as n! elements.) Our bounds hold for all input groups. We also introduce limited parallelism, and our lower processor bounds make our algorithms more practical. Finally, we show that learning two-groups is in class NC by reducing the membership, inclusion, and inequality problems to solving linear systems over GF(2). We present an O(log 3 n) time learning algorithm using n ω processors for learning two-groups from examples (where n × n matrix product takes logarithmic time using n ω processors).
doi_str_mv 10.1016/S0898-1221(99)00129-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26927885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122199001297</els_id><sourcerecordid>26927885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-c602aaf8c69242b7c4446c9670b4f177f34d82b0d4fb1a76d5540c581f1f9e463</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiV6GI0STN5rERKfUBBRF2HTOamjczLJCP23zttxa2rC4dzPrgfQucEXxNM-M0rlkrmhFJyqdQVxoSqXBygCZFilgvO5SGa_FWO0UmMHxhjNqN4gl4WznnroU2ZqVdd8GndeJvVYELr21XWuSytIYspDDYNAbZBD6EZkkm-a7NV6IY-ZuUmg2_T9DXEU3TkTB3h7PdO0fv94m3-mC-fH57md8vcUslTbjmmxjhpuaKMlsIyxrhVXOCSOSKEm7FK0hJXzJXECF4VBcO2kMQRp4Dx2RRd7Ll96D4HiEk3Plqoa9NCN0RNR7CQshiLxb5oQxdjAKf74BsTNppgvRWodwL11o5WSu8EajHubvc7GL_48hB03IqyUPkANumq8_8QfgDGgXjZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26927885</pqid></control><display><type>article</type><title>Efficient algorithmic learning of the structure of permutation groups by examples</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Azhar, S. ; Reif, J.H.</creator><creatorcontrib>Azhar, S. ; Reif, J.H.</creatorcontrib><description>This paper discusses learning algorithms for ascertaining membership, inclusion, and equality in permutation groups. The main results are randomized learning algorithms which take a random generator set of a fixed group G ≤ S n as input. We discuss randomized algorithms for learning the concepts of group membership, inclusion, and equality by representing the group in terms of its strong sequence of generators using random examples from G. We present O( n 3 log n) time sequential learning algorithms for testing membership, inclusion and equality. The running time is expressed as a function of the size of the object set. ( G ≤ S n can have as many as n! elements.) Our bounds hold for all input groups. We also introduce limited parallelism, and our lower processor bounds make our algorithms more practical. Finally, we show that learning two-groups is in class NC by reducing the membership, inclusion, and inequality problems to solving linear systems over GF(2). We present an O(log 3 n) time learning algorithm using n ω processors for learning two-groups from examples (where n × n matrix product takes logarithmic time using n ω processors).</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/S0898-1221(99)00129-7</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Computers &amp; mathematics with applications (1987), 1999, Vol.37 (10), p.105-132</ispartof><rights>1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-c602aaf8c69242b7c4446c9670b4f177f34d82b0d4fb1a76d5540c581f1f9e463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0898-1221(99)00129-7$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Azhar, S.</creatorcontrib><creatorcontrib>Reif, J.H.</creatorcontrib><title>Efficient algorithmic learning of the structure of permutation groups by examples</title><title>Computers &amp; mathematics with applications (1987)</title><description>This paper discusses learning algorithms for ascertaining membership, inclusion, and equality in permutation groups. The main results are randomized learning algorithms which take a random generator set of a fixed group G ≤ S n as input. We discuss randomized algorithms for learning the concepts of group membership, inclusion, and equality by representing the group in terms of its strong sequence of generators using random examples from G. We present O( n 3 log n) time sequential learning algorithms for testing membership, inclusion and equality. The running time is expressed as a function of the size of the object set. ( G ≤ S n can have as many as n! elements.) Our bounds hold for all input groups. We also introduce limited parallelism, and our lower processor bounds make our algorithms more practical. Finally, we show that learning two-groups is in class NC by reducing the membership, inclusion, and inequality problems to solving linear systems over GF(2). We present an O(log 3 n) time learning algorithm using n ω processors for learning two-groups from examples (where n × n matrix product takes logarithmic time using n ω processors).</description><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiV6GI0STN5rERKfUBBRF2HTOamjczLJCP23zttxa2rC4dzPrgfQucEXxNM-M0rlkrmhFJyqdQVxoSqXBygCZFilgvO5SGa_FWO0UmMHxhjNqN4gl4WznnroU2ZqVdd8GndeJvVYELr21XWuSytIYspDDYNAbZBD6EZkkm-a7NV6IY-ZuUmg2_T9DXEU3TkTB3h7PdO0fv94m3-mC-fH57md8vcUslTbjmmxjhpuaKMlsIyxrhVXOCSOSKEm7FK0hJXzJXECF4VBcO2kMQRp4Dx2RRd7Ll96D4HiEk3Plqoa9NCN0RNR7CQshiLxb5oQxdjAKf74BsTNppgvRWodwL11o5WSu8EajHubvc7GL_48hB03IqyUPkANumq8_8QfgDGgXjZ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Azhar, S.</creator><creator>Reif, J.H.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Efficient algorithmic learning of the structure of permutation groups by examples</title><author>Azhar, S. ; Reif, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-c602aaf8c69242b7c4446c9670b4f177f34d82b0d4fb1a76d5540c581f1f9e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azhar, S.</creatorcontrib><creatorcontrib>Reif, J.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azhar, S.</au><au>Reif, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient algorithmic learning of the structure of permutation groups by examples</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>1999</date><risdate>1999</risdate><volume>37</volume><issue>10</issue><spage>105</spage><epage>132</epage><pages>105-132</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper discusses learning algorithms for ascertaining membership, inclusion, and equality in permutation groups. The main results are randomized learning algorithms which take a random generator set of a fixed group G ≤ S n as input. We discuss randomized algorithms for learning the concepts of group membership, inclusion, and equality by representing the group in terms of its strong sequence of generators using random examples from G. We present O( n 3 log n) time sequential learning algorithms for testing membership, inclusion and equality. The running time is expressed as a function of the size of the object set. ( G ≤ S n can have as many as n! elements.) Our bounds hold for all input groups. We also introduce limited parallelism, and our lower processor bounds make our algorithms more practical. Finally, we show that learning two-groups is in class NC by reducing the membership, inclusion, and inequality problems to solving linear systems over GF(2). We present an O(log 3 n) time learning algorithm using n ω processors for learning two-groups from examples (where n × n matrix product takes logarithmic time using n ω processors).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0898-1221(99)00129-7</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 1999, Vol.37 (10), p.105-132
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_26927885
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
title Efficient algorithmic learning of the structure of permutation groups by examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20algorithmic%20learning%20of%20the%20structure%20of%20permutation%20groups%20by%20examples&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Azhar,%20S.&rft.date=1999&rft.volume=37&rft.issue=10&rft.spage=105&rft.epage=132&rft.pages=105-132&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/S0898-1221(99)00129-7&rft_dat=%3Cproquest_cross%3E26927885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26927885&rft_id=info:pmid/&rft_els_id=S0898122199001297&rfr_iscdi=true