Toxin‐Enabled “On‐Demand” Liposomes for Enhanced Phototherapy to Treat and Protect against Methicillin‐Resistant Staphylococcus aureus Infection
An effective therapeutic strategy against methicillin‐resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off‐ta...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-09, Vol.18 (35), p.e2203292-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | e2203292 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Zhuge, Deli Chen, Mengchun Yang, Xuewei Zhang, Xufei Yao, Lulu Li, Li Wang, Haonan Chen, Hao Yin, Qingqing Tian, Dongyan Weng, Cuiye Liu, Shuangshuang Xue, Pengpeng Lin, Yijing Sun, Yiruo Huang, Zhuoying Ye, Cen Jie‐Nuo Shen, Lan Huh, Joo Young Xia, Weiliang Zhao, Yingzheng Chen, Yijie |
description | An effective therapeutic strategy against methicillin‐resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off‐target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore‐forming toxins trigger on‐demand payload release. Upon subsequent near‐infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on‐demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high‐priority pathogens.
Van‐Lipo(IR780)‐PFC can capture MRSA toxins in situ, resulting in the on‐demand release of phototherapeutic agents, thus improving the specificity of PTT/PDT under NIR irradiation. Meanwhile, pore formation upon the insertion of toxins into the nanoparticles not only attenuating toxins’ cytotoxicity, but also resulting in generation of vaccines in situ, thus leading to anti‐MRSA immune response for preventing subsequent infection. |
doi_str_mv | 10.1002/smll.202203292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692756944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708714506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-40102c10bf61e7f37e41d2b5837c0ad59c231bb5bbe64d69a3621d9e402f7013</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhyNEJUrLlbMlLlx2Gdv5szmiskClVK3avVuOMyGuHDvYjsre9hE4I3i5fRK8LCoSl55mRvq-mZF-WfaawpICsHdhNGbJgDHgrGbPslNaUr4oV6x-_thTeJG9DOEegFOWV6fZj437pu1-931tZWuwI_vdz-vD_AFHabv97hdp9OSCGzGQ3nmytoO0KoE3g4suDujltCXRkY1HGUlyyI13EVXqv0htQyRXGAettDF_Dt1i0CFKG8ldlNOwNU45peZA5OwxlUvbJ1k7e56d9NIEfPW3nmWbj-vNxedFc_3p8uJ9s1C8ALbIgQJTFNq-pFj1vMKcdqwtVrxSILuiVozTti3aFsu8K2vJS0a7GnNgfQWUn2Vvj2sn777OGKIYdVBojLTo5iBYWbOqKOs8T-ib_9B7N3ubnhOsglVF8wLKRC2PlPIuBI-9mLwepd8KCuKQlDgkJR6TSkJ9FB60we0TtLi7app_7m9mbp8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708714506</pqid></control><display><type>article</type><title>Toxin‐Enabled “On‐Demand” Liposomes for Enhanced Phototherapy to Treat and Protect against Methicillin‐Resistant Staphylococcus aureus Infection</title><source>Wiley Online Library All Journals</source><creator>Zhuge, Deli ; Chen, Mengchun ; Yang, Xuewei ; Zhang, Xufei ; Yao, Lulu ; Li, Li ; Wang, Haonan ; Chen, Hao ; Yin, Qingqing ; Tian, Dongyan ; Weng, Cuiye ; Liu, Shuangshuang ; Xue, Pengpeng ; Lin, Yijing ; Sun, Yiruo ; Huang, Zhuoying ; Ye, Cen Jie‐Nuo ; Shen, Lan ; Huh, Joo Young ; Xia, Weiliang ; Zhao, Yingzheng ; Chen, Yijie</creator><creatorcontrib>Zhuge, Deli ; Chen, Mengchun ; Yang, Xuewei ; Zhang, Xufei ; Yao, Lulu ; Li, Li ; Wang, Haonan ; Chen, Hao ; Yin, Qingqing ; Tian, Dongyan ; Weng, Cuiye ; Liu, Shuangshuang ; Xue, Pengpeng ; Lin, Yijing ; Sun, Yiruo ; Huang, Zhuoying ; Ye, Cen Jie‐Nuo ; Shen, Lan ; Huh, Joo Young ; Xia, Weiliang ; Zhao, Yingzheng ; Chen, Yijie</creatorcontrib><description>An effective therapeutic strategy against methicillin‐resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off‐target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore‐forming toxins trigger on‐demand payload release. Upon subsequent near‐infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on‐demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high‐priority pathogens.
Van‐Lipo(IR780)‐PFC can capture MRSA toxins in situ, resulting in the on‐demand release of phototherapeutic agents, thus improving the specificity of PTT/PDT under NIR irradiation. Meanwhile, pore formation upon the insertion of toxins into the nanoparticles not only attenuating toxins’ cytotoxicity, but also resulting in generation of vaccines in situ, thus leading to anti‐MRSA immune response for preventing subsequent infection.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202203292</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>antivirulence therapy ; Bacterial infections ; Demand ; Drug resistance ; Immune system ; in situ vaccination ; Lipids ; MRSA infection ; Nanotechnology ; nanotoxoid ; Oxygen ; Perfluorocarbons ; photothermal/photodynamic therapy ; pore‐forming toxin ; sphingomyelin liposome ; Staphylococcus infections ; Toxins ; Vancomycin</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (35), p.e2203292-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-40102c10bf61e7f37e41d2b5837c0ad59c231bb5bbe64d69a3621d9e402f7013</citedby><cites>FETCH-LOGICAL-c3502-40102c10bf61e7f37e41d2b5837c0ad59c231bb5bbe64d69a3621d9e402f7013</cites><orcidid>0000-0001-5969-2505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202203292$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202203292$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhuge, Deli</creatorcontrib><creatorcontrib>Chen, Mengchun</creatorcontrib><creatorcontrib>Yang, Xuewei</creatorcontrib><creatorcontrib>Zhang, Xufei</creatorcontrib><creatorcontrib>Yao, Lulu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Haonan</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Yin, Qingqing</creatorcontrib><creatorcontrib>Tian, Dongyan</creatorcontrib><creatorcontrib>Weng, Cuiye</creatorcontrib><creatorcontrib>Liu, Shuangshuang</creatorcontrib><creatorcontrib>Xue, Pengpeng</creatorcontrib><creatorcontrib>Lin, Yijing</creatorcontrib><creatorcontrib>Sun, Yiruo</creatorcontrib><creatorcontrib>Huang, Zhuoying</creatorcontrib><creatorcontrib>Ye, Cen Jie‐Nuo</creatorcontrib><creatorcontrib>Shen, Lan</creatorcontrib><creatorcontrib>Huh, Joo Young</creatorcontrib><creatorcontrib>Xia, Weiliang</creatorcontrib><creatorcontrib>Zhao, Yingzheng</creatorcontrib><creatorcontrib>Chen, Yijie</creatorcontrib><title>Toxin‐Enabled “On‐Demand” Liposomes for Enhanced Phototherapy to Treat and Protect against Methicillin‐Resistant Staphylococcus aureus Infection</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>An effective therapeutic strategy against methicillin‐resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off‐target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore‐forming toxins trigger on‐demand payload release. Upon subsequent near‐infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on‐demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high‐priority pathogens.
Van‐Lipo(IR780)‐PFC can capture MRSA toxins in situ, resulting in the on‐demand release of phototherapeutic agents, thus improving the specificity of PTT/PDT under NIR irradiation. Meanwhile, pore formation upon the insertion of toxins into the nanoparticles not only attenuating toxins’ cytotoxicity, but also resulting in generation of vaccines in situ, thus leading to anti‐MRSA immune response for preventing subsequent infection.</description><subject>antivirulence therapy</subject><subject>Bacterial infections</subject><subject>Demand</subject><subject>Drug resistance</subject><subject>Immune system</subject><subject>in situ vaccination</subject><subject>Lipids</subject><subject>MRSA infection</subject><subject>Nanotechnology</subject><subject>nanotoxoid</subject><subject>Oxygen</subject><subject>Perfluorocarbons</subject><subject>photothermal/photodynamic therapy</subject><subject>pore‐forming toxin</subject><subject>sphingomyelin liposome</subject><subject>Staphylococcus infections</subject><subject>Toxins</subject><subject>Vancomycin</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhyNEJUrLlbMlLlx2Gdv5szmiskClVK3avVuOMyGuHDvYjsre9hE4I3i5fRK8LCoSl55mRvq-mZF-WfaawpICsHdhNGbJgDHgrGbPslNaUr4oV6x-_thTeJG9DOEegFOWV6fZj437pu1-931tZWuwI_vdz-vD_AFHabv97hdp9OSCGzGQ3nmytoO0KoE3g4suDujltCXRkY1HGUlyyI13EVXqv0htQyRXGAettDF_Dt1i0CFKG8ldlNOwNU45peZA5OwxlUvbJ1k7e56d9NIEfPW3nmWbj-vNxedFc_3p8uJ9s1C8ALbIgQJTFNq-pFj1vMKcdqwtVrxSILuiVozTti3aFsu8K2vJS0a7GnNgfQWUn2Vvj2sn777OGKIYdVBojLTo5iBYWbOqKOs8T-ib_9B7N3ubnhOsglVF8wLKRC2PlPIuBI-9mLwepd8KCuKQlDgkJR6TSkJ9FB60we0TtLi7app_7m9mbp8Q</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zhuge, Deli</creator><creator>Chen, Mengchun</creator><creator>Yang, Xuewei</creator><creator>Zhang, Xufei</creator><creator>Yao, Lulu</creator><creator>Li, Li</creator><creator>Wang, Haonan</creator><creator>Chen, Hao</creator><creator>Yin, Qingqing</creator><creator>Tian, Dongyan</creator><creator>Weng, Cuiye</creator><creator>Liu, Shuangshuang</creator><creator>Xue, Pengpeng</creator><creator>Lin, Yijing</creator><creator>Sun, Yiruo</creator><creator>Huang, Zhuoying</creator><creator>Ye, Cen Jie‐Nuo</creator><creator>Shen, Lan</creator><creator>Huh, Joo Young</creator><creator>Xia, Weiliang</creator><creator>Zhao, Yingzheng</creator><creator>Chen, Yijie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5969-2505</orcidid></search><sort><creationdate>20220901</creationdate><title>Toxin‐Enabled “On‐Demand” Liposomes for Enhanced Phototherapy to Treat and Protect against Methicillin‐Resistant Staphylococcus aureus Infection</title><author>Zhuge, Deli ; Chen, Mengchun ; Yang, Xuewei ; Zhang, Xufei ; Yao, Lulu ; Li, Li ; Wang, Haonan ; Chen, Hao ; Yin, Qingqing ; Tian, Dongyan ; Weng, Cuiye ; Liu, Shuangshuang ; Xue, Pengpeng ; Lin, Yijing ; Sun, Yiruo ; Huang, Zhuoying ; Ye, Cen Jie‐Nuo ; Shen, Lan ; Huh, Joo Young ; Xia, Weiliang ; Zhao, Yingzheng ; Chen, Yijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-40102c10bf61e7f37e41d2b5837c0ad59c231bb5bbe64d69a3621d9e402f7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antivirulence therapy</topic><topic>Bacterial infections</topic><topic>Demand</topic><topic>Drug resistance</topic><topic>Immune system</topic><topic>in situ vaccination</topic><topic>Lipids</topic><topic>MRSA infection</topic><topic>Nanotechnology</topic><topic>nanotoxoid</topic><topic>Oxygen</topic><topic>Perfluorocarbons</topic><topic>photothermal/photodynamic therapy</topic><topic>pore‐forming toxin</topic><topic>sphingomyelin liposome</topic><topic>Staphylococcus infections</topic><topic>Toxins</topic><topic>Vancomycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuge, Deli</creatorcontrib><creatorcontrib>Chen, Mengchun</creatorcontrib><creatorcontrib>Yang, Xuewei</creatorcontrib><creatorcontrib>Zhang, Xufei</creatorcontrib><creatorcontrib>Yao, Lulu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Haonan</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Yin, Qingqing</creatorcontrib><creatorcontrib>Tian, Dongyan</creatorcontrib><creatorcontrib>Weng, Cuiye</creatorcontrib><creatorcontrib>Liu, Shuangshuang</creatorcontrib><creatorcontrib>Xue, Pengpeng</creatorcontrib><creatorcontrib>Lin, Yijing</creatorcontrib><creatorcontrib>Sun, Yiruo</creatorcontrib><creatorcontrib>Huang, Zhuoying</creatorcontrib><creatorcontrib>Ye, Cen Jie‐Nuo</creatorcontrib><creatorcontrib>Shen, Lan</creatorcontrib><creatorcontrib>Huh, Joo Young</creatorcontrib><creatorcontrib>Xia, Weiliang</creatorcontrib><creatorcontrib>Zhao, Yingzheng</creatorcontrib><creatorcontrib>Chen, Yijie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuge, Deli</au><au>Chen, Mengchun</au><au>Yang, Xuewei</au><au>Zhang, Xufei</au><au>Yao, Lulu</au><au>Li, Li</au><au>Wang, Haonan</au><au>Chen, Hao</au><au>Yin, Qingqing</au><au>Tian, Dongyan</au><au>Weng, Cuiye</au><au>Liu, Shuangshuang</au><au>Xue, Pengpeng</au><au>Lin, Yijing</au><au>Sun, Yiruo</au><au>Huang, Zhuoying</au><au>Ye, Cen Jie‐Nuo</au><au>Shen, Lan</au><au>Huh, Joo Young</au><au>Xia, Weiliang</au><au>Zhao, Yingzheng</au><au>Chen, Yijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toxin‐Enabled “On‐Demand” Liposomes for Enhanced Phototherapy to Treat and Protect against Methicillin‐Resistant Staphylococcus aureus Infection</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>35</issue><spage>e2203292</spage><epage>n/a</epage><pages>e2203292-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>An effective therapeutic strategy against methicillin‐resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off‐target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore‐forming toxins trigger on‐demand payload release. Upon subsequent near‐infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on‐demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high‐priority pathogens.
Van‐Lipo(IR780)‐PFC can capture MRSA toxins in situ, resulting in the on‐demand release of phototherapeutic agents, thus improving the specificity of PTT/PDT under NIR irradiation. Meanwhile, pore formation upon the insertion of toxins into the nanoparticles not only attenuating toxins’ cytotoxicity, but also resulting in generation of vaccines in situ, thus leading to anti‐MRSA immune response for preventing subsequent infection.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202203292</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5969-2505</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (35), p.e2203292-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2692756944 |
source | Wiley Online Library All Journals |
subjects | antivirulence therapy Bacterial infections Demand Drug resistance Immune system in situ vaccination Lipids MRSA infection Nanotechnology nanotoxoid Oxygen Perfluorocarbons photothermal/photodynamic therapy pore‐forming toxin sphingomyelin liposome Staphylococcus infections Toxins Vancomycin |
title | Toxin‐Enabled “On‐Demand” Liposomes for Enhanced Phototherapy to Treat and Protect against Methicillin‐Resistant Staphylococcus aureus Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toxin%E2%80%90Enabled%20%E2%80%9COn%E2%80%90Demand%E2%80%9D%20Liposomes%20for%20Enhanced%20Phototherapy%20to%20Treat%20and%20Protect%20against%20Methicillin%E2%80%90Resistant%20Staphylococcus%20aureus%20Infection&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhuge,%20Deli&rft.date=2022-09-01&rft.volume=18&rft.issue=35&rft.spage=e2203292&rft.epage=n/a&rft.pages=e2203292-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202203292&rft_dat=%3Cproquest_cross%3E2708714506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708714506&rft_id=info:pmid/&rfr_iscdi=true |