On non-locally elastic Rayleigh wave
The Rayleigh-type wave solution within a widely used differential formulation in non-local elasticity is revisited. It is demonstrated that this wave solution does not satisfy the equations of motion for non-local stresses. A modified differential model taking into account a non-local boundary layer...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-09, Vol.380 (2231), p.20210387-20210387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20210387 |
---|---|
container_issue | 2231 |
container_start_page | 20210387 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 380 |
creator | Kaplunov, J. Prikazchikov, D. A. Prikazchikova, L. |
description | The Rayleigh-type wave solution within a widely used differential formulation in non-local elasticity is revisited. It is demonstrated that this wave solution does not satisfy the equations of motion for non-local stresses. A modified differential model taking into account a non-local boundary layer is developed. Correspondence of the latter model to the original integral theory with the kernel in the form of the zero-order modified Bessel function of the second kind is addressed. Asymptotic behaviour of the model is investigated, resulting in a leading-order non-local correction to the classical Rayleigh wave speed due to the effect of the boundary layer. The suitability of a continuous set-up for modelling boundary layers in the framework of non-local elasticity is analysed starting from a toy problem for a semi-infinite chain.
This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)’. |
doi_str_mv | 10.1098/rsta.2021.0387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692754984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692754984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a09fcbbbef8bd69b4709abebf7401f6f7d3505c19d35fac398e783b7b3e66b2c3</originalsourceid><addsrcrecordid>eNotkL1LAzEchoMoWKur8w0OLjnzncsoRatQKIiCW0jSX_QkvavJVel_7x11et7h4R0ehK4pqSkxzV0ug6sZYbQmvNEnaEaFppgZxU7HzZXAkvD3c3RRyhchlCrJZuhm3VVd3-HUB5fSoYLkytCG6sUdErQfn9Wv-4FLdBZdKnD1zzl6e3x4XTzh1Xr5vLhf4cClGrAjJgbvPcTGb5TxQhPjPPioBaFRRb3hkshAzcjoAjcN6IZ77Tko5Vngc3R7_N3l_nsPZbDbtgRIyXXQ74tlyjAthWnEqNZHNeS-lAzR7nK7dflgKbFTDjvlsFMOO-Xgf04KU1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692754984</pqid></control><display><type>article</type><title>On non-locally elastic Rayleigh wave</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kaplunov, J. ; Prikazchikov, D. A. ; Prikazchikova, L.</creator><creatorcontrib>Kaplunov, J. ; Prikazchikov, D. A. ; Prikazchikova, L.</creatorcontrib><description>The Rayleigh-type wave solution within a widely used differential formulation in non-local elasticity is revisited. It is demonstrated that this wave solution does not satisfy the equations of motion for non-local stresses. A modified differential model taking into account a non-local boundary layer is developed. Correspondence of the latter model to the original integral theory with the kernel in the form of the zero-order modified Bessel function of the second kind is addressed. Asymptotic behaviour of the model is investigated, resulting in a leading-order non-local correction to the classical Rayleigh wave speed due to the effect of the boundary layer. The suitability of a continuous set-up for modelling boundary layers in the framework of non-local elasticity is analysed starting from a toy problem for a semi-infinite chain.
This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2021.0387</identifier><language>eng</language><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-09, Vol.380 (2231), p.20210387-20210387</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a09fcbbbef8bd69b4709abebf7401f6f7d3505c19d35fac398e783b7b3e66b2c3</citedby><cites>FETCH-LOGICAL-c356t-a09fcbbbef8bd69b4709abebf7401f6f7d3505c19d35fac398e783b7b3e66b2c3</cites><orcidid>0000-0001-7505-4546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kaplunov, J.</creatorcontrib><creatorcontrib>Prikazchikov, D. A.</creatorcontrib><creatorcontrib>Prikazchikova, L.</creatorcontrib><title>On non-locally elastic Rayleigh wave</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>The Rayleigh-type wave solution within a widely used differential formulation in non-local elasticity is revisited. It is demonstrated that this wave solution does not satisfy the equations of motion for non-local stresses. A modified differential model taking into account a non-local boundary layer is developed. Correspondence of the latter model to the original integral theory with the kernel in the form of the zero-order modified Bessel function of the second kind is addressed. Asymptotic behaviour of the model is investigated, resulting in a leading-order non-local correction to the classical Rayleigh wave speed due to the effect of the boundary layer. The suitability of a continuous set-up for modelling boundary layers in the framework of non-local elasticity is analysed starting from a toy problem for a semi-infinite chain.
This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkL1LAzEchoMoWKur8w0OLjnzncsoRatQKIiCW0jSX_QkvavJVel_7x11et7h4R0ehK4pqSkxzV0ug6sZYbQmvNEnaEaFppgZxU7HzZXAkvD3c3RRyhchlCrJZuhm3VVd3-HUB5fSoYLkytCG6sUdErQfn9Wv-4FLdBZdKnD1zzl6e3x4XTzh1Xr5vLhf4cClGrAjJgbvPcTGb5TxQhPjPPioBaFRRb3hkshAzcjoAjcN6IZ77Tko5Vngc3R7_N3l_nsPZbDbtgRIyXXQ74tlyjAthWnEqNZHNeS-lAzR7nK7dflgKbFTDjvlsFMOO-Xgf04KU1g</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Kaplunov, J.</creator><creator>Prikazchikov, D. A.</creator><creator>Prikazchikova, L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7505-4546</orcidid></search><sort><creationdate>20220905</creationdate><title>On non-locally elastic Rayleigh wave</title><author>Kaplunov, J. ; Prikazchikov, D. A. ; Prikazchikova, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a09fcbbbef8bd69b4709abebf7401f6f7d3505c19d35fac398e783b7b3e66b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplunov, J.</creatorcontrib><creatorcontrib>Prikazchikov, D. A.</creatorcontrib><creatorcontrib>Prikazchikova, L.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplunov, J.</au><au>Prikazchikov, D. A.</au><au>Prikazchikova, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On non-locally elastic Rayleigh wave</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2022-09-05</date><risdate>2022</risdate><volume>380</volume><issue>2231</issue><spage>20210387</spage><epage>20210387</epage><pages>20210387-20210387</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The Rayleigh-type wave solution within a widely used differential formulation in non-local elasticity is revisited. It is demonstrated that this wave solution does not satisfy the equations of motion for non-local stresses. A modified differential model taking into account a non-local boundary layer is developed. Correspondence of the latter model to the original integral theory with the kernel in the form of the zero-order modified Bessel function of the second kind is addressed. Asymptotic behaviour of the model is investigated, resulting in a leading-order non-local correction to the classical Rayleigh wave speed due to the effect of the boundary layer. The suitability of a continuous set-up for modelling boundary layers in the framework of non-local elasticity is analysed starting from a toy problem for a semi-infinite chain.
This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)’.</abstract><doi>10.1098/rsta.2021.0387</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7505-4546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-09, Vol.380 (2231), p.20210387-20210387 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_2692754984 |
source | Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | On non-locally elastic Rayleigh wave |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20non-locally%20elastic%20Rayleigh%20wave&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kaplunov,%20J.&rft.date=2022-09-05&rft.volume=380&rft.issue=2231&rft.spage=20210387&rft.epage=20210387&rft.pages=20210387-20210387&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2021.0387&rft_dat=%3Cproquest_cross%3E2692754984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692754984&rft_id=info:pmid/&rfr_iscdi=true |